4.5 Article

A robust self-learning PID control system design for nonlinear systems using a particle swarm optimization algorithm

Journal

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13042-011-0021-4

Keywords

PID control; Particle swarm optimization (PSO); H-infinity control

Ask authors/readers for more resources

This study presents a robust self-learning proportional-integral-derivative (RSPID) control system design for nonlinear systems. This RSPID control system comprises a self-learning PID (SPID) controller and a robust controller. The gradient descent method is utilized to derive the on-line tuning laws of SPID controller; and the H-infinity control technique is applied for the robust controller design so as to achieve robust tracking performance. Moreover, in order to achieve fast learning of PID controller, a particle swarm optimization (PSO) algorithm is adopted to search the optimal learning-rates of PID adaptive gains. Finally, two nonlinear systems, a two-link manipulator and a chaotic system are examined to illustrate the effectiveness of the proposed control algorithm. Simulation results show that the proposed control system can achieve favorable control performance for these nonlinear systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available