4.6 Article

Enhanced insulin absorption from sublingual microemulsions: effect of permeation enhancers

Journal

DRUG DELIVERY AND TRANSLATIONAL RESEARCH
Volume 4, Issue 5-6, Pages 429-438

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s13346-014-0205-z

Keywords

Insulin; Permeation enhancer; Sublingual; Microemulsion; Circular dichroism; MALDI; Vitamin E TPGS

Funding

  1. University Grants Commission, Government of India

Ask authors/readers for more resources

Microemulsions of insulin (50 IU/mL) comprising permeation enhancers were formulated for sublingual delivery. Circular dichroism (CD) spectra indicated conformational stability, while chemical stability was confirmed by high-performance liquid chromatography (HPLC). CD spectra of insulin in combination with permeation enhancers revealed attenuation of molar ellipticity at 274 nm in the order TCTP> TC-AOT>TC>TC-NMT>Sol P>insulin solution. The molar ellipticity ratios at 208/222 nm confirmed dissociation of insulin in the microemulsions with the same rank order. Matrix-assisted laser diffraction ionization mass spectra (MALDI) revealed a significant shift in intensity signals towards monomer and dimers with a substantially high ratio of monomers, especially in the presence of the TCTP and TC-AOT. Permeation through porcine sublingual mucosa correlated with the dissociation data. A high correlation between the ratio of molar ellipticity at 208/222 nm and serum glucose levels (r(2)>0.958) and serum insulin levels (r(2)>0.952) strongly suggests the role of dissociation of insulin on enhanced absorption. While all microemulsions revealed a reduction in serum glucose levels and increase in serum insulin levels, significant differences were observed with the TCTP and TC-AOT microemulsions. High pharmacological availability >60 % and bioavailability >55 % compared to subcutaneous insulin at a low dose of 2 IU/kg appears highly promising. The data clearly suggests the additional role of the permeation enhancers on dissociation of insulin on enhanced sublingual absorption from the microemulsions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available