4.4 Article

Longitudinal relationships between whole body and central adiposity on weight-bearing bone geometry, density, and bone strength: a pQCT study in young girls

Journal

ARCHIVES OF OSTEOPOROSIS
Volume 8, Issue 1-2, Pages -

Publisher

SPRINGER LONDON LTD
DOI: 10.1007/s11657-013-0156-x

Keywords

Regional adiposity; Bone development; Girls; Volumetric bone mineral density (vBMD); Peripheral quantitative computed tomography (pQCT)

Funding

  1. NICHD NIH HHS [R01 HD050775, HD-050775] Funding Source: Medline

Ask authors/readers for more resources

Longitudinal relationships between adiposity (total body and central) and bone development were assessed in young girls. Total body and android fat masses were positively associated with bone strength and density parameters of the femur and tibia. These results suggest adiposity may have site-specific stimulating effects on the developing bone. Introduction Childhood obesity may impair bone development, but the relationships between adiposity and bone remain unclear. Failure to account for fat pattern may explain the conflicting results. Purpose Longitudinal associations of total body fat mass (TBFM) and android fat mass (AFM) with 2-year changes in weight-bearing bone parameters were examined in 260 girls aged 8-13 years at baseline. Peripheral quantitative computed tomography was used to measure bone strength index (BSI, square milligrams per quartic millimeter), strength-strain index (SSI, cubic millimeters), and volumetric bone mineral density (vBMD, milligrams per cubic centimeter) at distal metaphyseal and diaphyseal regions of the femur and tibia. TBFM and AFM were assessed by dual-energy x-ray absorptiometry. Results Baseline TBFM and AFM were positively associated with the change in femur BSI (r = 0.20, r = 0.17, respectively) and femur trabecular vBMD (r = 0.19, r = 0.19, respectively). Similarly, positive associations were found between TBFM and change in tibia BSI and SSI (r = 0.16, r = 0.15, respectively), and femur total and trabecular vBMD (r = 0.12, r = 0.14, respectively). Analysis of covariance showed that girls in the middle thirds of AFM had significantly lower femur trabecular vBMD and significantly higher tibia cortical vBMD than girls in the highest thirds of AFM. All results were significant at p < 0.05. Conclusions Whereas baseline levels of TBFM and AFM are positive predictors of bone strength and density at the femur and tibia, higher levels of AFM above a certain level may impair cortical vBMD growth at weight-bearing sites. Future studies in obese children will be needed to test this possibility. NIH/NICHD #HD-050775.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available