4.1 Article

Atomic order in the spinel structure - a group-theoretical analysis

Journal

Publisher

INT UNION CRYSTALLOGRAPHY
DOI: 10.1107/S2053273313027605

Keywords

-

Funding

  1. Ministry of Education and Science of the Russian Federation in the framework of the State task [N6.8604.2013]

Ask authors/readers for more resources

Group-theoretical methods of the Landau theory of phase transitions are used to investigate the structures of ordered spinels. The possibility of the existence is determined of 305 phases with different types of order in Wyckoff position 8a (including seven binary and seven ternary cation substructures), 537 phases in Wyckoff position 16d (including eight binary and 11 ternary cation substructures), 595 phases in Wyckoff position 32e (including seven binary and four ternary anion substructures) and 549 phases with simultaneous ordering in Wyckoff positions 8a and 16d (including five substructures with binary order in tetrahedral and octahedral sublattices, two substructures with ternary order in both spinel sublattices, and nine substructures with different combined types of binary and ternary order). Theoretical results and experimental data are compared. Calculated structures of the spread types of ordered low-symmetry spinel modifications are given. (C) 2014 International Union of Crystallography

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available