4.4 Article

Protein-protein Interactions Visualized by Bimolecular Fluorescence Complementation in Tobacco Protoplasts and Leaves

Journal

JOVE-JOURNAL OF VISUALIZED EXPERIMENTS
Volume -, Issue 85, Pages -

Publisher

JOURNAL OF VISUALIZED EXPERIMENTS
DOI: 10.3791/51327

Keywords

Plant Biology; Issue 85; Tetratricopeptide repeat domain; chaperone; chloroplasts; endoplasmic reticulum; HSP90; Toc complex; Sec translocon; BiFC

Funding

  1. DFG
  2. Fonds der chemischen Industrie [SFB 1035, Do 187/22]

Ask authors/readers for more resources

Many proteins interact transiently with other proteins or are integrated into multi-protein complexes to perform their biological function. Bimolecular fluorescence complementation (BiFC) is an in vivo method to monitor such interactions in plant cells. In the presented protocol the investigated candidate proteins are fused to complementary halves of fluorescent proteins and the respective constructs are introduced into plant cells via agrobacterium-mediated transformation. Subsequently, the proteins are transiently expressed in tobacco leaves and the restored fluorescent signals can be detected with a confocal laser scanning microscope in the intact cells. This allows not only visualization of the interaction itself, but also the subcellular localization of the protein complexes can be determined. For this purpose, marker genes containing a fluorescent tag can be coexpressed along with the BiFC constructs, thus visualizing cellular structures such as the endoplasmic reticulum, mitochondria, the Golgi apparatus or the plasma membrane. The fluorescent signal can be monitored either directly in epidermal leaf cells or in single protoplasts, which can be easily isolated from the transformed tobacco leaves. BiFC is ideally suited to study protein-protein interactions in their natural surroundings within the living cell. However, it has to be considered that the expression has to be driven by strong promoters and that the interaction partners are modified due to fusion of the relatively large fluorescence tags, which might interfere with the interaction mechanism. Nevertheless, BiFC is an excellent complementary approach to other commonly applied methods investigating protein-protein interactions, such as coimmunoprecipitation, in vitro pull-down assays or yeast-two-hybrid experiments.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available