4.6 Article

Nonlinear Acoustic Echo Cancellation Based on Sparse Functional Link Representations

Journal

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TASLP.2014.2324175

Keywords

Functional link adaptive filters; nonlinear modeling; nonlinear acoustic echo cancellation; proportionate adaptive filters; sparse adaptive filters

Funding

  1. MINECO [TEC2011-22480, PRI-PIBIN-2011-1266]

Ask authors/readers for more resources

Recently, a new class of nonlinear adaptive filtering architectures has been introduced based on the functional link adaptive filter (FLAF) model. Here we focus specifically on the split FLAF (SFLAF) architecture, which separates the adaptation of linear and nonlinear coefficients using two different adaptive filters in parallel. This property makes the SFLAF a well-suited method for problems like nonlinear acoustic echo cancellation (NAEC), in which the separation of filtering tasks brings some performance improvement. Although flexibility is one of the main features of the SFLAF, some problem may occur when the nonlinearity degree of the input signal is not known a priori. This implies a non-optimal choice of the number of coefficients to be adapted in the nonlinear path of the SFLAF. In order to tackle this problem, we propose a proportionate FLAF (PFLAF), which is based on sparse representations of functional links, thus giving less importance to those coefficients that do not actively contribute to the nonlinear modeling. Experimental results show that the proposed PFLAF achieves performance improvement with respect to the SFLAF in several nonlinear scenarios.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available