4.2 Article

Deformation of the Manazuru Knoll in Sagami Bay, central Japan, associated with subduction of the Philippine Sea plate

Journal

EARTH PLANETS AND SPACE
Volume 66, Issue -, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1186/1880-5981-66-109

Keywords

Manazuru Knoll; Multichannel seismic reflection survey; Sagami Bay; Sagami Knoll; Philippine Sea plate

Ask authors/readers for more resources

In January 2010, we conducted a multichannel seismic (MCS) reflection survey in Sagami Bay. As a result of this study, the deformation of the Manazuru Knoll, which is located near the plate boundary, was obtained. The Manazuru Knoll was formed by an asymmetric anticline, and the knoll has a geometry that is bent in a shape similar to that of a crank. The anticlinal axis, which was confirmed by MCS data, lies along the anticlinal axis shown on the bathymetric map, and the axis is bent first to the southeast and then to the east. It is estimated that the easternmost part of Manazuru Knoll has reached the vicinity of Miura Canyon. The offset of the strike of the anticline axis is approximately 7 km. A reverse fault related to the formation of Manazuru Knoll was identified in the southwestern side of the knoll. It is hypothesized that this reverse fault formed as a result of shortening of the structure, which occurred when the relative motion of the Philippine Sea plate was acting in a perpendicular direction close to the Manazuru Knoll. Therefore, it is estimated that the relative motion of the Philippine Sea plate was almost oblique or parallel to the anticlinal axis of Manazuru Knoll and that the eastern end of Manazuru Knoll was bent into a crank shape by strike-slip motion. This suggests that a part of Manazuru Knoll, located to the west of the plate boundary, moved to the northwest. Finally, it is assumed that the sediments of Miura Canyon and Sagami Knoll have been overlapping on the eastern end of Manazuru Knoll.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available