4.5 Article

An On-Chip SiC MEMS Device with Integrated Heating, Sensing, and Microfluidic Cooling Systems

Journal

ADVANCED MATERIALS INTERFACES
Volume 5, Issue 20, Pages -

Publisher

WILEY
DOI: 10.1002/admi.201800764

Keywords

microfluidic cooling; power electronics; SiC MEMS; SiC; Si heterostructure; thermoresistive effect

Funding

  1. Australian Research Council [LP150100153, LP160101553]

Ask authors/readers for more resources

There has been increasing interest in electronic systems with integrated microfluidic active cooling modules. However, the failure of 3C-SiC/Si interface with increasing temperature has prevented the development of 3C-SiC power electronic devices. Here, all integrated transparent heating, sensing, and cooling systems are developed on a single silicon carbide (SiC) chip for efficient thermal management. SiC nanofilms are grown on a silicon wafer, are transferred to a glass substrate, and then a micro electromechanical system process is employed to fabricate a SiC-on-glass system with integrated heaters and temperature sensors. A cooling system is fabricated with microchannel using 3D printing, molding, and plasma assisted bonding. The thermal management of the SiC-based system shows an excellent capability of heating and detecting temperature as well as effective cooling with an efficiency of from 0.24 to 0.28 and a maximum cooling rate of 0.1 K(mu L min(-1))(-1). The fabrication strategy can be utilized for large production of SiC power nanoelectronics with high efficiency of integrated thermal management systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available