4.1 Article

Degradation and reduction of acute toxicity of environmentally persistent perfluorooctanoic acid (PFOA) using VUV photolysis and TiO2 photocatalysis in acidic and basic aqueous solutions

Journal

TOXICOLOGICAL AND ENVIRONMENTAL CHEMISTRY
Volume 93, Issue 5, Pages 925-940

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/02772248.2011.564173

Keywords

PFOA; vacuum ultraviolet (VUV); photolysis; photocatalysis; microtox

Funding

  1. Korean Government (Ministry of Education, Science and Technology) [KRF-2008-359-2008-1-D00012]

Ask authors/readers for more resources

Degradation and toxicity reduction of perfluorooctanoic acid (PFOA) were investigated using TiO2 adsorption, vacuum ultraviolet (VUV) photolysis, and VUV/TiO2 photocatalysis in acidic and basic aqueous solutions. Chemical analyses of PFOA and its selected by-products and an acute toxicity assessment using the luminescent bacteria Vibrio fischeri (Microtox (R)) were conducted during and after the various treatment methods. PFOA was found to be best treated by VUV/TiO2 at pH 4 with HClO4, as illustrated by the almost complete degradation of PFOA within 360 min and rapid removal of acute microbial toxicity within 60 min. This difference in the efficiency may be attributed to the strong oxidation effectiveness of the radical species generated in acidic media and the electron scavenger effect of the addition of HClO4 in VUV/TiO2 photocatalysis. In addition, the proposed method could effectively decompose other perfluorocarboxylic acid (PFCA) species (C3-C7 perfluoroalkyl groups) if the initial intermediates formed were longer-chain species that degraded stepwise into shorter-chain compounds by VUV photolysis and VUV/TiO2 photocatalysis in acidic and basic aqueous solutions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available