4.8 Article

DNA metallization for high performance Li-ion battery anodes

Journal

NANO ENERGY
Volume 8, Issue -, Pages 17-24

Publisher

ELSEVIER
DOI: 10.1016/j.nanoen.2014.05.007

Keywords

Biological template; DNA nanostructure; DNA metallization; Lithium ion battery

Funding

  1. National Research Foundation of Korea (NRF) - Korea Government (MEST) [NRF-2010-ClAAA001-0029031, NRF-2012-R1A2A1A01011970]

Ask authors/readers for more resources

Metal cluster formation on the DNA backbone, known as so-called DNA metallization, has caught much attention for both biological and non-biological research areas. DNA metallization is particularly useful for overcoming intrinsically tow electronic conductivity of DNA and has been used for generating conductive wires for various applications such as molecular electronics. Meanwhile, designing effective nanostructure electrodes are very critical for advanced lithium ion batteries (LIBs) especially in achieving high energy densities and long cycle lives. Among various LIB anode candidates, metal oxides offer several times higher theoretical capacities compared to those of conventional graphite anodes, utilizing unique conversion reaction mechanism. Herein, we report a 1D nickel oxide nanostructure whose morphology was directed by DNA metallization. The unique 1D DNA nanostructure delivered high reversible capacity of 850 mA h g(-1) and robust cycling performance for 150 cycles. The present study suggests that various nanostructures in biological systems and nature, especially after simple chemical reactions, can be key elements for high capacity LIB electrodes that suffer from large volume changes during battery operations. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available