4.6 Review

Modeling and Optimization of Y-Type Micromixers

Journal

MICROMACHINES
Volume 5, Issue 4, Pages 886-912

Publisher

MDPI
DOI: 10.3390/mi5040886

Keywords

micromixers; microflow; mixing; CFD; micro-particle image velocimetry (micro-PIV); droplets; volume of fluid (VOF)

Funding

  1. Russian Science Foundation [14-19-00312]
  2. Russian Science Foundation [14-19-00312] Funding Source: Russian Science Foundation

Ask authors/readers for more resources

A trend in the global technological progress in the last few decades is the development of microsystem technology, microelectromechanical systems and corresponding technologies. Fluid mixing is an extremely important process widely used in various microfluidic devices (chemical microreactors, chemical and biological analyzers, drug delivery systems, etc.). To increase the mixing rate, it is necessary to use special devices: micromixers. This paper presents the results of a hydrodynamic simulation of Y-shaped micromixers. Flows are analyzed for both low and moderate Reynolds numbers. The passive and active mixers are considered. The dependence of the mixing efficiency on the Reynolds and Peclet numbers, as well as the possibility of using the hydrophobic and ultra-hydrophobic coatings is analyzed. Five different flow regimes were identified: (1) stationary vortex-free flow (Re < 5); (2) stationary symmetric vortex flow with two horseshoe vortices (5 < Re < 150); (3) stationary asymmetric vortex flow (150 < Re < 240); (4) non-stationary periodic flow (240 < Re < 400); and (5) stochastic flow (Re > 400). The maximum mixing efficiency was obtained for stationary asymmetric vortex flow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available