4.5 Article

Insect virus transmission: different routes to persistence

Journal

CURRENT OPINION IN INSECT SCIENCE
Volume 8, Issue -, Pages 130-135

Publisher

ELSEVIER
DOI: 10.1016/j.cois.2015.01.007

Keywords

-

Funding

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants programme

Ask authors/readers for more resources

Transmission is a fundamental process in disease ecology; however, the factors that modulate transmission and the dynamical and evolutionary consequences of these factors in host populations are difficult to study in natural settings. Much of our current knowledge comes from a limited number of virus groups and few ecological studies. Alternatively, progress has been made in the detection of new viruses and in probing the molecular basis of behavioural manipulation of hosts that might influence virus transmission. An expanding theoretical framework provides guidelines on the conditions under which particular transmission strategies might evolve, and their dynamical consequences, but empirical tests are lacking.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
Article Biology

An integrative framework for tick management: the need to connect wildlife science, One Health, and interdisciplinary perspectives

Erika Machtinger, Karen C. Poh, Risa Pesapane, Danielle M. Tufts

Summary: Vector-borne diseases, transmitted by insects, are a significant threat to global human and animal health. Their emergence is influenced by factors such as environmental changes, host characteristics, and human behavior. The One Health approach is necessary to comprehensively investigate tick-borne diseases and understand the complex interactions between environmental, animal, and human health.

CURRENT OPINION IN INSECT SCIENCE (2024)

Article Biology

An insect's energy bar: the potential role of plant guttation on biological control

Pablo Urbaneja-Bernat, Alejandro Tena, Joel Gonzalez-Cabrera, Cesar Rodriguez-Saona

Summary: This article reviews the potential role of plant guttation as a food source for natural enemies, discussing its nutritional value, effects on insect communities, and potential use in conservation biological control.

CURRENT OPINION IN INSECT SCIENCE (2024)

Article Biology

Genomic signatures of eusocial evolution in insects

Alina A. Mikhailova, Sarah Rinke, Mark C. Harrison

Summary: The genomes of eusocial insects allow the production and regulation of highly distinct phenotypes, largely independent of genotype. Eusociality has evolved convergently in at least three insect orders, but eusocial phenotypes show remarkable similarity. Increased regulatory complexity and the adaptive evolution of chemical communication are common genomic signatures of eusociality. Colony life itself can shape genomes of divergent taxa in a similar manner.

CURRENT OPINION IN INSECT SCIENCE (2024)

Article Biology

The diversification of butterfly wing patterns: progress and prospects

Dequn Teng, Wei Zhang

Summary: Butterfly wings, with their rich phenotypic diversity and complex biological functions, serve as a crucial system for studying the genetic basis and evolution of phenotypic diversification. Recent studies have revealed the complex functions and genetic and environmental factors involved in determining wing patterns. These factors lead to inter-specific divergence, genetic polymorphism, and phenotypic plasticity, often controlled by key genes. Gene co-option has also been identified as an important mechanism for functional complexity and evolutionary novelty. However, further research is needed for a systematic and comprehensive understanding.

CURRENT OPINION IN INSECT SCIENCE (2024)