4.6 Article

Synthesis of carbon nanotubes by microwave heating: Influence of diameter of catalytic Ni nanoparticles on diameter of CNTs

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 2, Issue 8, Pages 2773-2780

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3ta13297h

Keywords

-

Funding

  1. Japan Society for the Promotion of Science [25620142]

Ask authors/readers for more resources

We rapidly synthesized multi walled carbon nanotubes (MWCNTs) by calcination of granulated polystyrene with nickel nanoparticles having different average diameter (D-Ni = 10, 20, 50 or 90 nm) under nitrogen gas at a certain temperature and time (700 degrees C, 15 min or 800 degrees C, 10 min), using a domestic microwave oven in order to systematically investigate the influence of the diameter of nickel nanoparticles on the diameter of MWCNTs. The MWCNTs synthesized here were characterized by a transmission electron microscope, a Raman spectrophotometer and a wide angle X-ray diffractometer. We found that for the calcination condition of (800 degrees C, 10 min), a relationship between the outer diameter of the resulted carbon nanotubes (D-CNT) and the diameter of catalytic nickel nanoparticles (D-Ni) can be described as a linear function, D-CNT = 1.01D(Ni) + 14.79 nm with the correlation coefficient R = 0.99, and that for the calcination condition of 700 degrees C, 15 min, D-CNT = 1.12D(Ni) + 7.80 nm with R = 0.95. Thus, we revealed that when the diameter of the catalytic nickel nanoparticles (D-Ni) increases by 1 nm, the outer diameter of the obtained MWCNTs (D-CNT) increases by about 1 nm.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available