3.9 Article

Formal concept analysis approach to cognitive functionalities of bidirectional associative memory

Journal

BIOLOGICALLY INSPIRED COGNITIVE ARCHITECTURES
Volume 12, Issue -, Pages 20-33

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.bica.2015.04.003

Keywords

Associative memories; Cognition; Concept hierarchy; Concept lattice; Formal concept analysis; Pattern association

Ask authors/readers for more resources

Pattern association is one among the ways through which human brain stores and recalls information. From the literature, it is evident that cognitive abilities of human brain such as learning, memorizing, recalling and updating of information are performed via concepts and their connections. In this work we have made use of Formal Concept Analysis (FCA), a mathematical framework for data and knowledge processing, to represent memories and to perform some of the cognitive functions of human brain. In particular, we model the functionalities of bidirectional associative memories. The proposed model can learn, memorize the learnt information, bi-directionally recall the information that is associated with the presented cue with the help of object-attribute relations that exists in the scenario and update the knowledge when there is a change in the considered scenario. Also when a noisy cue is given, the model is capable of recalling the most closely associated pattern by exploiting the concept hierarchy principle of FCA. Similarly, when a new information is presented on a learnt scenario, the proposed model can update its knowledge by avoiding the need to re-learn scenario. We illustrate the proposed model with a case study and validate with experiments on few real world datasets. (C) 2015 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.9
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available