4.5 Article

Local Thermographic Efficiency Analysis of Multicrystalline and Cast-Mono Silicon Solar Cells

Journal

IEEE JOURNAL OF PHOTOVOLTAICS
Volume 3, Issue 4, Pages 1192-1199

Publisher

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JPHOTOV.2013.2270355

Keywords

Dark current; infrared imaging; local efficiency analysis; lock-in thermography; photovoltaic cells; thermal analysis

Funding

  1. German Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety
  2. industry partners within the research cluster SolarWinS [0325270C]

Ask authors/readers for more resources

Local dark current contributions of multicrystalline (mc) and cast-mono silicon (Si) solar cells were evaluated by using dark lock-in thermography (DLIT) measurements. The goal of these investigations was to evaluate the influence of the contact metallization on the efficiency. Both materials are treated by nearly the same solar cell process. Because of a special print design, the current density caused by the front-side and rear-side silver metallization can be measured separately, and their influence on the overall cell performance can be estimated. We measure an increase of the local saturation current density J(01) by about 2.8 x 10(-12) to 6.7 x 10(-12) A/cm(2) at the soldering pads of the solar cell, compared with about 6 x 10(-13) A/cm(2) in the undisturbed regions. In the region of the front-side busbars, J(01) increases locally by about 4.5 x 10(-13) to 17.6 x 10(-13) A/cm(2). The local depletion region recombination current, as well as the ohmic shunt current, is not affected by the screen-printed contacts. The bulk and back surface recombination in mc-Si within regions with a low amount of defects are almost the same as in cast-mono material. However, in regions of recombination active bulk defects, a significant increase in the recombination activity at the front contact was observed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available