4.2 Article

Measurement of instantaneous perceived self-motion using continuous pointing

Journal

EXPERIMENTAL BRAIN RESEARCH
Volume 195, Issue 3, Pages 429-444

Publisher

SPRINGER
DOI: 10.1007/s00221-009-1805-6

Keywords

Inertial cues; Self-motion perception; Passive transport; Continuous pointing; Spatial updating

Categories

Ask authors/readers for more resources

In order to optimally characterize full-body self-motion perception during passive translations, changes in perceived location, velocity, and acceleration must be quantified in real time and with high spatial resolution. Past methods have failed to effectively measure these critical variables. Here, we introduce continuous pointing as a novel method with several advantages over previous methods. Participants point continuously to the mentally updated location of a previously viewed target during passive, full-body movement. High-precision motion-capture data of arm angle provide a measure of a participant's perceived location and, in turn, perceived velocity at every moment during a motion trajectory. In two experiments, linear movements were presented in the absence of vision by passively translating participants with a robotic wheelchair or an anthropomorphic robotic arm (MPI Motion Simulator). The movement profiles included constant-velocity trajectories, two successive movement intervals separated by a brief pause, and reversed-motion trajectories. Results indicate a steady decay in perceived velocity during constant-velocity travel and an attenuated response to mid-trial accelerations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available