4.5 Article

Controls on fallen leaf chemistry and forest floor element masses in native and novel forests across a tropical island

Journal

ECOSPHERE
Volume 5, Issue 4, Pages -

Publisher

WILEY
DOI: 10.1890/ES13-00263.1

Keywords

C/N ratio; forest floor mass; landscape analyses; leaf litter chemistry; N/P ratio; novel forests; precipitation effects; stand age; stoichiometry; subtropical forests; tropical legumes; variance analysis

Categories

Funding

  1. International Institute of Tropical Forestry (IITF)
  2. Southern Research Station of the USDA Forest Service

Ask authors/readers for more resources

Litter chemistry varies across landscapes according to factors rarely examined simultaneously. We analyzed 11 elements in forest floor (fallen) leaves and additional litter components from 143 forest inventory plots systematically located across Puerto Rico, a tropical island recovering from large-scale forest clearing. We assessed whether three existing, independently-derived, landscape classifications (Holdridge life zone, remotely sensed forest type (leaf longevity combined with geology generalized to karst vs. non-karst), and plot-based measures of forest assemblage) would separate observed gradients. With principal component and regression analyses, we also tested whether climate-, landscape-(geology, elevation, aspect, percent slope, slope position, distance from coast), and stand-scale (tree species composition, basal area, density, stand age) variables explained variation in fallen leaf chemistry and stoichiometry. For fallen leaves, C, Ca, Mg, Na, and Mn concentrations differed by Holdridge life zone and C, P, Ca, Mn, Al, and Fe concentrations differed by forest type, where leaf longevity distinguished C and Ca concentrations and geology distinguished C, P, Ca, Mn, Al, and Fe concentrations. Fallen leaf C, P, Ca, and Mn concentrations also differed, and N concentrations only differed, by forest assemblage. Across several scales, fallen leaf N concentration was positively related to the basal area of putatively N2-fixing tree legumes, which were concentrated in lower topographic positions, providing for the first time a biological explanation for the high N concentrations of fallen leaves in these locations. Phosphorus concentrations in fallen leaves by forest assemblages also correlated with the basal area of N2-fixing legumes, and P and N concentrations decreased with mean age of assemblage. Fallen leaves from younger (, 50 yr, 86% of the plots) and often novel forests had higher P, Fe, and Al and lower C concentrations and lower C/P and N/P ratios than fallen leaves from older forests, the latter due to a decrease in P rather than changes in N. These findings suggest that both N and P availability may currently be greater on the island than pre-deforestation, and substantiate the unique roles that state factors play in contributing to the spatial heterogeneity of fallen leaf chemistry.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Ecology

Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems

Nathaly R. Guerrero-Ramirez, Dylan Craven, Peter B. Reich, John J. Ewel, Forest Isbell, Julia Koricheva, John A. Parrotta, Harald Auge, Heather E. Erickson, David I. Forrester, Andy Hector, Jasmin Joshi, Florencia Montagnini, Cecilia Palmborg, Daniel Piotto, Catherine Potvin, Christiane Roscher, Jasper van Ruijven, David Tilman, Brian Wilsey, Nico Eisenhauer

NATURE ECOLOGY & EVOLUTION (2017)

Article Forestry

Tree growth at stand and individual scales in two dual-species mixture experiments in southern Washington State, USA

Heather E. Erickson, Constance A. Harrington, David D. Marshall

CANADIAN JOURNAL OF FOREST RESEARCH (2009)

Article Soil Science

Soil fluxes of methane, nitrous oxide, and nitric oxide from aggrading forests in coastal Oregon

Heather E. Erickson, Steven S. Perakis

SOIL BIOLOGY & BIOCHEMISTRY (2014)

Correction Ecology

Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems (vol 1, pg 1639, 2017)

Nathaly R. Guerrero-Ramirez, Dylan Craven, Peter B. Reich, John J. Ewel, Forest Isbell, Julia Koricheva, John A. Parrotta, Harald Auge, Heather E. Erickson, David I. Forrester, Andy Hector, Jasmin Joshi, Florencia Montagnini, Cecilia Palmborg, Daniel Piotto, Catherine Potvin, Christiane Roscher, Jasper van Ruijven, David Tilman, Brian Wilsey, Nico Eisenhauer

NATURE ECOLOGY & EVOLUTION (2019)

Article Forestry

Effects of vegetation patches on soil nutrient pools and fluxes within a mixed-conifer forest

HE Erickson, P Soto, DW Johnson, B Roath, C Hunsaker

FOREST SCIENCE (2005)

Article Environmental Sciences

Short-term effects of experimental burning and thinning on soil respiration in an old-growth, mixed-conifer forest

Siyan Ma, Jiquan Chen, Malcolm North, Heather E. Erickson, Mary Bresee, James Le Moine

ENVIRONMENTAL MANAGEMENT (2004)

Article Biodiversity Conservation

Hurricane-induced nitrous oxide fluxes from a wet tropical forest

HE Erickson, G Ayala

GLOBAL CHANGE BIOLOGY (2004)

Article Biology

Testing a conceptual model of soil emissions of nitrous and nitric oxides

EA Davidson, M Keller, HE Erickson, LV Verchot, E Veldkamp

BIOSCIENCE (2000)

No Data Available