4.5 Review

Fracture-based micro- and nanofabrication for biological applications

Journal

BIOMATERIALS SCIENCE
Volume 2, Issue 3, Pages 288-296

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3bm60276a

Keywords

-

Funding

  1. US National Institutes of Health [HG0063-03]
  2. Biointerfaces Institute Seed Grant
  3. Banting and Natural Sciences and Engineering Research Council of Canada (NSERC)
  4. NATIONAL HUMAN GENOME RESEARCH INSTITUTE [R01HG004653] Funding Source: NIH RePORTER

Ask authors/readers for more resources

While fracture is generally considered to be undesirable in various manufacturing processes, delicate control of fracture can be successfully implemented to generate structures at micro/nano length scales. Fracture-based fabrication techniques can serve as a template-free manufacturing method, and enables highly-ordered patterns or fluidic channels to be formed over large areas in a simple and cost-effective manner. Such technologies can be leveraged to address biologically-relevant problems, such as in the analysis of biomolecules or in the design of culture systems that imitate the cellular or molecular environment. This mini review provides an overview of current fracture-guided fabrication techniques and their biological applications. We first survey the mechanical principles of fracture-based approaches. Then we describe biological applications at the cellular and molecular levels. Finally, we discuss unique advantages of different systems for biological studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available