4.4 Article

Physiological basis of tolerance to complete submergence in rice involves genetic factors in addition to the SUB1 gene

Journal

AOB PLANTS
Volume 6, Issue -, Pages -

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/aobpla/plu060

Keywords

Flash floods; rainfed lowlands; recovery of submergence; rice; submergence tolerance; SUB1; tillering

Funding

  1. German Federal Ministry for Economic Cooperation and Development (BMZ)

Ask authors/readers for more resources

Recurring floods in Asia cause poor crop establishment. Yields decline drastically when plants are completely submerged for a few days. Traditional rice cultivars predominate because they have acquired moderate tolerance to flooding but they carry the penalty of inherently lower grain yields. In contrast, modern high-yielding varieties are highly susceptible to flooding. Cultivars with tolerance to complete submergence were recently developed in the background of popular varieties by transferring the submergence tolerance gene SUBMERGENCE1 (SUB1) from the highly tolerant Indian landrace FR13A. The present study evaluated three pairs of Sub1 near-isogenic lines (NILs) together with FR13A and two of its submergence-tolerant derivatives under field conditions to assess the survival and growth processes occurring during submergence and recovery that are associated with SUB1. Under control conditions, the NILs showed similar growth and biomass accumulation, indicating that SUB1 had no apparent effects. Submergence substantially decreased biomass accumulation but with greater reduction in the genotypes lacking SUB1, particularly when submergence was prolonged for 17 days. When submerged, the lines lacking SUB1 showed greater elongation and lower or negative biomass accumulation. Sub1 lines maintained higher chlorophyll concentrations during submergence and lost less non-structural carbohydrates (NSC) after submergence. This indicates that the introgression of SUB1 resulted in better regulation of NSC during submergence and that high pre-submergence NSC is not essential for the submergence tolerance conferred by SUB1. During recovery, chlorophyll degradation was faster in genotypes lacking SUB1 and any surviving plants showed poorer and delayed emergence of tillers and leaves. Sub1 lines restored new leaf and tiller production faster. During submergence, FR13A showed not only slower leaf elongation but also accumulated extra biomass and was able to recover faster than Sub1 lines. This suggests the possibility of further improvements in submergence tolerance by incorporating additional traits present in FR13A or other similar landraces.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available