3.8 Article

Opposing Rigidity-Protein Gradients Reverse Fibroblast Durotaxis

Journal

ACS BIOMATERIALS SCIENCE & ENGINEERING
Volume 1, Issue 8, Pages 621-631

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acsbiomaterials.5b00229

Keywords

cell migration; durotaxis; haptotaxis; directed migration

Funding

  1. Institute for Critical Technology and Applied Sciences at Virginia Tech
  2. National Science Foundation (NSF CAREER) [DMR-0955873]
  3. Direct For Mathematical & Physical Scien [0955873] Funding Source: National Science Foundation

Ask authors/readers for more resources

The migration of cells is a complex and dynamic process that is governed by several stimuli acting simultaneously. In vivo, cells receive and process a wide range of cues that guide their motion and migratory characteristics such as speed and directionality. The design of biomaterials that can recapitulate the combinatorial signaling environment can aid in understanding how migrating cells respond to more than one stimulus and when one cue dominates over the other. We have designed hydrogel substrates that exhibit opposing rigidity-and collagen gradients. Within the boundaries of the interfacial region, the values for substrate modulus decreased in one direction with a concomitant increase in the concentration of surface-bound collagen. The well-known durotactic migration of fibroblasts was first validated on substrates that only exhibit a gradient in modulus while keeping the concentration of surface-bound collagen constant. Upon increasing the collagen concentration on the low-modulus regions by 4- or 7-fold compared to the high-modulus side of the interface, cells exhibited directed migration toward the soft regions of the substrate. This effect was more pronounced when the surface-bound collagen concentration was 7-fold greater. Cell displacements, areas, cytoskeleton and focal adhesions were investigated on the opposing rigidity-immobilized collagen gradients. These features were affected by the elastic modulus of the substrate as well as the change in protein concentration. In the future, incorporating multiple gradients within a single substrate will lead to a deeper and more comprehensive understanding of cells navigate through the complex in vivo microenvironment.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available