4.7 Article

A Comparison of Advanced Regression Algorithms for Quantifying Urban Land Cover

Journal

REMOTE SENSING
Volume 6, Issue 7, Pages 6324-6346

Publisher

MDPI
DOI: 10.3390/rs6076324

Keywords

machine learning; regression; sub-pixel mapping; spatial resolution; imaging spectrometry; hyperspectral; urban land cover

Funding

  1. German Research Foundation [HO 2568/2-2]
  2. EnMAP Core Science Team activities by the Federal Ministry of Economics and Technology (BMWi) [FKZ 50EE0949]

Ask authors/readers for more resources

Quantitative methods for mapping sub-pixel land cover fractions are gaining increasing attention, particularly with regard to upcoming hyperspectral satellite missions. We evaluated five advanced regression algorithms combined with synthetically mixed training data for quantifying urban land cover from HyMap data at 3.6 and 9 m spatial resolution. Methods included support vector regression (SVR), kernel ridge regression (KRR), artificial neural networks (NN), random forest regression (RFR) and partial least squares regression (PLSR). Our experiments demonstrate that both kernel methods SVR and KRR yield high accuracies for mapping complex urban surface types, i.e., rooftops, pavements, grass-and tree-covered areas. SVR and KRR models proved to be stable with regard to the spatial and spectral differences between both images and effectively utilized the higher complexity of the synthetic training mixtures for improving estimates for coarser resolution data. Observed deficiencies mainly relate to known problems arising from spectral similarities or shadowing. The remaining regressors either revealed erratic (NN) or limited (RFR and PLSR) performances when comprehensively mapping urban land cover. Our findings suggest that the combination of kernel-based regression methods, such as SVR and KRR, with synthetically mixed training data is well suited for quantifying urban land cover from imaging spectrometer data at multiple scales.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available