4.7 Article

Estimating Crown Variables of Individual Trees Using Airborne and Terrestrial Laser Scanners

Journal

REMOTE SENSING
Volume 3, Issue 11, Pages 2346-2363

Publisher

MDPI
DOI: 10.3390/rs3112346

Keywords

airborne laser scanner; terrestrial laser scanner; digital canopy model; k-means clustering; crown geometric volume

Funding

  1. Korea Forest Service [S120911L010130]
  2. Korea Forest Service [S120911L010130] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

Ask authors/readers for more resources

In this study, individual tree height (TH), crown base height (CBH), crown area (CA) and crown volume (CV), which were considered as essential parameters for individual stem volume and biomass estimation, were estimated by both an airborne laser scanner (ALS) and a terrestrial laser scanner (TLS). These ALS- and TLS-derived tree parameters were compared because TLS has been introduced as an instrument to measure objects more precisely. ALS-estimated TH was extracted from the highest value within a crown boundary delineated with the crown height model (CHM). The ALS-derived CBH of individual trees was estimated by k-means clustering method using the ALS data within the boundary. The ALS-derived CA was calculated simply with the crown boundary, after which CV was computed automatically using the crown geometric volume (CGV). On the other hand, all TLS-derived parameters were detected manually and precisely except the TLS-derived CGV. As a result, the ALS-extracted TH, CA, and CGV values were underestimated whereas CBH was overestimated when compared with the TLS-derived parameters. The coefficients of determination (R-2) from the regression analysis between the ALS and TLS estimations were approximately 0.94, 0.75, 0.69 and 0.58, and root mean square errors (RMSEs) were approximately 0.0184 m, 0.4929 m, 2.3216 m(2) and 13.2087 m(3) for TH, CBH, CA and CGV, respectively. Thereby, the error rate decreased to 0.0089, 0.0727 and 0.0875 for TH, CA and CGV via the combination of ALS and TLS data.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available