4.5 Article

Inferring Plasmodium vivax Transmission Networks from Tempo-Spatial Surveillance Data

Journal

PLOS NEGLECTED TROPICAL DISEASES
Volume 8, Issue 2, Pages -

Publisher

PUBLIC LIBRARY SCIENCE
DOI: 10.1371/journal.pntd.0002682

Keywords

-

Funding

  1. Hong Kong Research Grants Council [HKBU211212]
  2. National Natural Science Foundation of China [NSFC81273192]

Ask authors/readers for more resources

Background The transmission networks of Plasmodium vivax characterize how the parasite transmits from one location to another, which are informative and insightful for public health policy makers to accurately predict the patterns of its geographical spread. However, such networks are not apparent from surveillance data because P. vivax transmission can be affected by many factors, such as the biological characteristics of mosquitoes and the mobility of human beings. Here, we pay special attention to the problem of how to infer the underlying transmission networks of P. vivax based on available tempo-spatial patterns of reported cases. Methodology We first define a spatial transmission model, which involves representing both the heterogeneous transmission potential of P. vivax at individual locations and the mobility of infected populations among different locations. Based on the proposed transmission model, we further introduce a recurrent neural network model to infer the transmission networks from surveillance data. Specifically, in this model, we take into account multiple real-world factors, including the length of P. vivax incubation period, the impact of malaria control at different locations, and the total number of imported cases. Principal Findings We implement our proposed models by focusing on the P. vivax transmission among 62 towns in Yunnan province, People's Republic China, which have been experiencing high malaria transmission in the past years. By conducting scenario analysis with respect to different numbers of imported cases, we can (i) infer the underlying P. vivax transmission networks, (ii) estimate the number of imported cases for each individual town, and (iii) quantify the roles of individual towns in the geographical spread of P. vivax. Conclusion The demonstrated models have presented a general means for inferring the underlying transmission networks from surveillance data. The inferred networks will offer new insights into how to improve the predictability of P. vivax transmission. Author Summary The transmission of Plasmodium vivax has induced enormous public health problems at the global level. Natural transmission of P. vivax depends on interactions between anopheles mosquitoes and human beings. There are two important factors that influence its geographical spread. First, different locations may have different risks of infection due to their heterogeneous environmental and demographical profiles. Second, human mobility may bring pathogens from high-transmission locations to low-transmission locations. In view of this, to effectively and efficiently control the geographical spread of P. vivax, it would be desirable for us to characterize how it transmits from one location to another. To achieve this, we first build a spatial transmission model to characterize both the heterogeneous infection risks at individual locations and the underlying mobility of infected populations. By doing so, we can further infer the underlying P. vivax transmission networks from tempo-spatial surveillance data by using a machine learning method (i.e., based on a recurrent neural network model). Our study offers new insights into malaria surveillance and control from the viewpoint of both system modeling and machine learning.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available