4.1 Article

Occurrence of perfluoroalkyl and polyfluoroalkyl substances in the water environment and their removal in a water treatment process

Journal

JOURNAL OF WATER REUSE AND DESALINATION
Volume 5, Issue 2, Pages 196-210

Publisher

IWA PUBLISHING
DOI: 10.2166/wrd.2014.068

Keywords

contamination; conventional water treatment; granular activated carbon; high-pressure membrane; perfluoroalkyl and polyfluoroalkyl substances; water environment

Ask authors/readers for more resources

Perfluoroalkyl and polyfluoroalkyl substances (PFASs) such as perfluorooctanoic acid (PFOA), and perfluorooctane sulfonate (PFOS) are found in aquatic environments worldwide. The presence of these compounds in the water environment is still unclear, even though direct or indirect discharges of these compounds from industries to the aquatic environment are the potential routes. In this paper, PFOA and PFOS contamination of aquatic ecosystems, and their removal efficiency by different water treatment processes are reviewed. Typically, PFOS and PFOA contamination levels are higher in industrialized countries than in non-industrial countries. Coagulation, sand filtration, sedimentation, oxidation and disinfection are mostly ineffective in removing PFASs from drinking and wastewater. Granular activated carbon demonstrated the removal of PFASs and the extent of removal depends on operational conditions, such as temperature, operational life period and empty bed contact time. High-pressure membrane systems are the most suitable processes for removing the PFOS and PFOA in water sources. In the high-pressure membrane, removal of those chemicals occurs through rejection via electrostatic interaction. The extent of the reduction efficiency depends on the solution chemistry of the sample; lower pH and higher calcium ion addition in the water sample enhance the reduction efficiency in the high-pressure membrane application.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available