4.2 Article

Long-Term Behavioral Effects in a Rat Model of Prolonged Postnatal Morphine Exposure

Journal

BEHAVIORAL NEUROSCIENCE
Volume 129, Issue 5, Pages 643-655

Publisher

AMER PSYCHOLOGICAL ASSOC
DOI: 10.1037/bne0000081

Keywords

behavioral sensitization; hot plate; locomotor activity; novel-object recognition test; opioid

Funding

  1. National Institutes of Health (NIH) [K08 DA035972-01]
  2. Trailblazer Award from Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital

Ask authors/readers for more resources

Prolonged morphine treatment in neonatal pediatric populations is associated with a high incidence of opioid tolerance and dependence. Despite the clinical relevance of this problem, our knowledge of long-term consequences is sparse. The main objective of this study was to investigate whether prolonged morphine administration in a neonatal rat is associated with long-term behavioral changes in adulthood. Newborn animals received either morphine (10 mg/kg) or equal volume of saline subcutaneously twice daily for the first 2 weeks of life. Morphine-treated animals underwent 10 days of morphine weaning to reduce the potential for observable physical signs of withdrawal. Animals were subjected to nonstressful testing (locomotor activity recording and a novel-object recognition test) at a young age (Postnatal Days [PDs] 27-31) or later in adulthood (PDs 55-56), as well as stressful testing (calibrated forceps test, hot plate test, and forced swim test) only in adulthood. Analysis revealed that prolonged neonatal morphine exposure resulted in decreased thermal but not mechanical threshold. Importantly, no differences were found for total locomotor activity (proxy of drug reward/reinforcement behavior), individual forced swim test behaviors (proxy of affective processing), or novel-object recognition test. Performance on the novel-object recognition test was compromised in the morphine-treated group at the young age, but the effect disappeared in adulthood. These novel results provide insight into the long-term consequences of opioid treatment during an early developmental period and suggest long-term neuroplastic differences in sensory processing related to thermal stimuli.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available