4.7 Article

Cytoplasmic-targeted parvalbumin blocks the proliferation of multipotent mesenchymal stromal cells in prophase

Journal

STEM CELL RESEARCH & THERAPY
Volume 4, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/scrt291

Keywords

Mesenchymal stem cells; Targeted parvalbumin; Calcium signaling; Proliferation; Cyclins

Funding

  1. NIH [1R03TW008709]
  2. CAPES
  3. FAPEMIG
  4. CNPq
  5. Reitoria de Pesquisa da Universidade Federal de Minas Gerais

Ask authors/readers for more resources

Introduction: Multipotent mesenchymal stromal cells (MSCs) have gained considerable interest because of their potential use in the treatment of a variety of diseases and injuries. Although remarkable advancements have been made in clinical studies, substantial concerns still regard the safety of MSCs. Some evidence suggests that MSCs can spontaneously generate a population of cells with tumorigenic potential. Thus, studying the molecular mechanisms that control the proliferation of MSCs may be a necessary step toward the development of strategies for safe clinical practice. Ca2+ is a second messenger that mediates a wide range of cellular responses, including the regulation of cell proliferation, but little is known about its function in MSCs. The aim of this study was to investigate the effects of targeted Ca2+ buffering on MSCs proliferation in vitro. Methods: Here, we used an adenoviral (Ad) vector encoding the Ca2+ chelator protein parvalbumin (PV) fused to a nuclear exclusion signal (NES) and the Discosoma red fluorescent protein (DsRed) to investigate the function of cytoplasmic Ca2+ signals on MSC proliferation. Confocal microscopy was used to demonstrate that PV-NES-DsRed was expressed in the cytoplasm. Ca2+ signaling was monitored by using Fluo-4-AM. Fluorescence-activated cell sorting (FACS) analysis of cells that were stained with propidium iodide was used as a quantitative measure of cell death. The mitotic index was assessed by immunofluorescence, and the expression of cyclins was examined with Western blot. Results: Our results show that the Ad-PV-NES-DsRed fusion protein decreased serum-induced Ca2+ signaling and blocked the proliferation of rat adipose-derived MSCs (AT-MSCs) in prophase. FACS analysis revealed that Ad-PV-NES-DsRed did not induce cell death in AT-MSCs. Furthermore, Western blot analysis demonstrated that Ad-PV-NES-DsRed reduced extracellular signal-regulated kinase (Erk1/2) phosphorylation and cyclin B1 expression. Buffering cytosolic Ca2+ did not alter the expression of cyclins A/D1/D2/D3/E and E2. Conclusions: Our results show that cytoplasmic Ca2+ signals are important for AT-MSCs progression beyond prophase because of their effects on Erk phosphorylation and cyclin B1 expression.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available