4.2 Article

Interactive effects of iron oxides and organic matter on charge properties of red soils in Thailand

Journal

SOIL RESEARCH
Volume 51, Issue 3, Pages 222-231

Publisher

CSIRO PUBLISHING
DOI: 10.1071/SR13021

Keywords

cation exchange capacity; electrophoretic mobility; Fe oxide concentrate; isoelectric point; silver thiourea method; tropical soils

Categories

Funding

  1. Royal Golden Jubilee PhD Program under The Thailand Research Fund
  2. Kasetsart University Research and Development Institute (KURDI)

Ask authors/readers for more resources

Iron (Fe) oxides and organic matter (OM) play important roles in maintaining the fertility of highly weathered soils. The main objective of this study was to investigate the interactive effects of variable surface charge minerals, particularly Fe oxide minerals, and OM on the charge properties of red soils from Thailand. We also evaluated the effect of the 5 M NaOH procedure, used to concentrate Fe oxides from soils, on the charge characteristics of Fe oxide concentrates. Fourteen clay fractions (untreated and OM-free clay fractions), and Fe oxide concentrates of these clays, were used in the study. Cation exchange capacity (CEC) and electrophoretic mobility (EM) were measured for the soil clays, artificial mixtures, and goethite adsorbed with humic acid (HA) and phosphate (P). Kaolinite and Fe oxides (predominantly a mixture of hematite and goethite) were the main minerals in the clay fraction. Results indicated that OM or metal-OM complexes may have blocked or neutralised negatively charged sites on clay minerals. After OM removal these sites became accessible, inducing an increase in CEC and shifting the EM values towards more negative values and the isoelectric point (IEP) towards lower pH for many samples. The CEC values of Fe oxide concentrates prepared by 5 M NaOH treatment were overestimated and their EM and IEP shifted towards more negative values. It is possible that the amorphous phase from clay dissolution was still present in the Fe oxide concentrates, or the adsorption of silicate ions modified the surfaces of Fe oxides concentrates. Humic acid and P adsorbed on Fe oxide surfaces caused the IEP to shift to lower values. In natural soil conditions, a variety of anions can be adsorbed on Fe oxide surfaces, which might lead to higher values of negative charge and lower IEP than observed for pure synthetic minerals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available