4.7 Article

Nitrogen Deprivation Induces Lipid Droplet Accumulation and Alters Fatty Acid Metabolism in Symbiotic Dinoflagellates Isolated from Aiptasia pulchella

Journal

SCIENTIFIC REPORTS
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep05777

Keywords

-

Funding

  1. National Science Council, Taiwan, ROC [NSC 102-2313-B-291-001]

Ask authors/readers for more resources

The stability of cnidarian-dinoflagellate (genus Symbiodinium spp.) endosymbioses depends on the regulation of nutrient transport between Symbiodinium populations and their hosts. Previously, we successfully induced the production of lipid droplets in the free-living cultured Symbiodinium (clade B) under the nitrogen-deprivation condition for 5 days. Therefore, the present study aimed at understanding the disruption of the endosymbiotic relationship between the cnidarians and dinoflagellates by nitrogen deprivation using Aiptasia pulchella as an example. Transmission electron micrographs revealed the formation of lipid droplets induced by nitrogen deprivation, and the lipid analyses further showed that polyunsaturated fatty acids were drastically enriched in Symbiodinium after 30 days of nitrogen deprivation, although these were unaffected after 5 days of nitrogen starvation. The present study also suggested that the host provided nitrogen to the symbiotic cells during short-term environmental stress. However, the relationship started to deteriorate after 30 days. These findings provide a more detailed understanding of the mechanisms of the symbiotic relationship between the symbiotic dinoflagellates in terms of the nitrogen source, which might provide more information for the explanation of the regulatory mechanism underlying endosymbiotic associations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available