4.7 Article

Nature of strong hole pairing in doped Mott antiferromagnets

Journal

SCIENTIFIC REPORTS
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/srep05419

Keywords

-

Funding

  1. NBRPC [2010CB923003]
  2. NSF [DMR-0906816, PREM DMR-1205734]
  3. Division Of Materials Research
  4. Direct For Mathematical & Physical Scien [0906816, 1205734] Funding Source: National Science Foundation

Ask authors/readers for more resources

Cooper pairing instability in a Fermi liquid is well understood by the BCS theory, but pairing mechanism for doped Mott insulators still remains elusive. Previously it has been shown by density matrix renormalization group (DMRG) method that a single doped hole is always self-localized due to the quantum destructive interference of the phase string signs hidden in the t-J ladders. Here we report a DMRG investigation of hole binding in the same model, where a novel pairing-glue scheme beyond the BCS realm is discovered. Specifically, we show that, in addition to spin pairing due to superexchange interaction, the strong frustration of the phase string signs on the kinetic energy gets effectively removed by pairing the charges, which results in strong binding of two holes. By contrast, if the phase string signs are switched off artificially, the pairing strength diminishes significantly even if the superexchange coupling remains the same. In the latter, unpaired holes behave like coherent quasiparticles with pairing drastically weakened, whose sole origin may be attributed to the resonating-valence-bond (RVB) pairing of spins. Such non-BCS pairing mechanism is therefore beyond the RVB picture and may shed important light on the high-T-c cuprate superconductors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available