4.2 Article

Potential Role of lncRNAs in Contributing to Pathogenesis of Intervertebral Disc Degeneration Based on Microarray Data

Journal

MEDICAL SCIENCE MONITOR
Volume 21, Issue -, Pages 3449-3458

Publisher

INT SCIENTIFIC INFORMATION, INC
DOI: 10.12659/MSM.894638

Keywords

Afferent Pathways; Gene Ontology; Intervertebral Disc Degeneration; RNA, Long Noncoding

Ask authors/readers for more resources

Background: Our study intended to identify potential long non-coding RNAs (lncRNAs) and genes, and to elucidate the underlying mechanisms of intervertebral disc degeneration (IDD). Material/Methods: The microarray of GSE56081 was downloaded from the Gene Expression Omnibus database, including 5 human control nucleus pulposus tissues and 5 degenerative nucleus pulposus tissues, which was on the basis of GPL15314 platform. Identification of differentially expressed lncRNAs and mRNAs were performed between the 2 groups. Then, gene ontology (GO) and pathway enrichment analyses were performed to analyze the biological functions and pathways for the differentially expressed mRNAs. Simultaneously, lncRNA-mRNA weighted coexpression network was constructed using the WGCNA package, followed by GO and KEGG pathway enrichment analyses for the genes in the modules. Finally, the protein-protein interaction (PPI) network was visualized. Results: A total of 135 significantly up-and 170 down-regulated lncRNAs and 2133 significantly up-and 1098 downregulated mRNAs were identified. Additionally, UBA52 (ubiquitin A-52 residue ribosomal protein fusion product 1), with the highest connectivity degree in PPI network, was remarkably enriched in the pathway of metabolism of proteins. Eight lncRNAs - LINC00917, CTD-2246P4.1, CTC-523E23.5, RP4-639J15.1, RP11-363G2.4, AC005082.12, MIR132, and RP11-38F22.1 - were observed in the modules of lncRNA-mRNA weighted coexpression network. Moreover, SPHK1 in the green-yellow module was significantly enriched in positive regulation of cell migration. Conclusions: LncRNAs LINC00917, CTD-2246P4.1, CTC-523E23.5, RP4-639J15.1, RP11-363G2.4, AC005082.12, MIR132, and RP11-38F22.1 were differentially expressed and might play important roles in the development of IDD. Key genes, such as UBA52 and SPHK1, may be pivotal biomarkers for IDD.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available