4.5 Article

Nonlinear bending of third-order shear deformable carbon nanotube/fiber/polymer multiscale laminated composite rectangular plates with different edge supports

Journal

EUROPEAN PHYSICAL JOURNAL PLUS
Volume 133, Issue 7, Pages -

Publisher

SPRINGER HEIDELBERG
DOI: 10.1140/epjp/i2018-12103-2

Keywords

-

Ask authors/readers for more resources

The geometrically nonlinear bending behavior of carbon nanotube/fiber/polymer multiscale laminated composite (CNT-FPMLC) rectangular plates with various edge conditions subjected to the uniform transverse mechanical loading is investigated. Based on the Reddy's third-order shear deformation plate theory and employing the von Karman hypotheses and fundamental lemma of calculus of variations, the governing equilibrium equations including the shear deformation effect and geometrical nonlinearity together with associated boundary conditions are developed. The fiber micromechanics and the Halpin-Tsai relations are employed to approximately calculate the material properties of multiscale composite. Also, the carbon nanotubes (CNTs) are assumed to be distributed uniformly and oriented arbitrarily through the epoxy resin matrix. For the large deflection analysis, first, the generalized differential quadrature (GDQ) method is used to discretize the differential governing equations and corresponding boundary conditions resulting in a set of nonlinear algebraic equations. Then, the pseudo-arclength continuation technique is utilized to numerically solve the resulting nonlinear parameterized equations and subsequently obtain the load-deflection curve of CNT-FPMLC rectangular plates with different edge supports. Several numerical results are provided to reveal the influences of the weight percentage of single-walled and multi-walled CNTs, CNT aspect ratio, volume fraction of fibers, length-to-thickness ratio of plate and boundary conditions on the nonlinear responses of the CNT-FPMLC plates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Article Mechanics

Investigating the effect of carbon interfacial layer on the elastoplastic response of ceramic particle-reinforced metal matrix composites

M. Pakseresht, R. Ansari, M. K. Hassanzadeh-Aghdam

Summary: This paper discusses a coating solution for protecting titanium-based composites and utilizes the Mori-Tanaka method to determine the properties of the composite. The experimental results show that an increase in the thickness of the carbon coating has a negative effect on the elastic properties and stress-strain curve of the composite.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2023)

Article Mechanics

Analytical solution approach for nonlinear vibration of shear deformable imperfect FG-GPLR porous nanocomposite cylindrical shells

Mahdi Salehi, Raheb Gholami, Reza Ansari

Summary: This study presents an analytical solution approach to examine the nonlinear vibration of geometrically imperfect functionally graded porous circular cylindrical shells reinforced with graphene platelets (GPL) surrounded on an elastic foundation. The effective mechanical properties of considered functionally graded graphene platelet-reinforced porous nanocomposites are characterized via a micromechanical model. The nonlinear frequency response curves are obtained with the use of the method of multiple scales.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2023)

Article Acoustics

Analyzing free vibration of a beam-type liquid micro-pump with free boundary approach

Hamed Hatami, Ahmad Bagheri, Reza Ansari

Summary: This article comprehensively analyzes the free vibration of beam-type liquid micro-pump using a free boundary approach and employs the Newmark method to obtain the natural frequencies, mode shapes, and fluid oscillations of the coupled system. The comparison between free and fixed boundary methods reveals a slight deviation in natural frequency for small oscillations of the Euler-Bernoulli micro-beam, which can be negligible.

JOURNAL OF VIBRATION AND CONTROL (2023)

Article Materials Science, Multidisciplinary

Effect of graphene nano-sheets on the elastic and piezoelectric coefficients of unidirectional PZT-7A/polyimide hybrid composites

Yasin Keramati, Reza Ansari, Mohammad Kazem Hassanzadeh-Aghdam

Summary: This research investigates the effect of adding graphene nano-sheets (GNSs) on the elastic and piezoelectric responses of PZT-7A piezoelectric fiber/polyimide hybrid composites. It develops a nested micromechanical modeling strategy to predict the effective properties of these composites and performs parametric studies to examine the influences of various factors. The results show that the uniform dispersion of GNSs improves the elastic and piezoelectric properties, while agglomeration has a negative effect on the properties.

JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES (2023)

Article Chemistry, Physical

Molecular dynamics investigation of the mechanical properties and fracture behaviour of hydroxyl-functionalised carbon and silicon carbide nanotubes-reinforced polymer nanocomposites

M. Eghbalian, R. Ansari, S. Haghighi

Summary: The tensile properties and fracture mechanism of hydroxyl-functionalized silicon carbide nanotubes (O-fSiCNTs) inserted into polymer matrices were studied using molecular dynamics (MD) simulations based on the notion of representative volume elements (RVEs). The incorporation of chemisorbed nanotubes in polymers significantly enhances their mechanical properties. The O-fSiCNTs/PE and O-fSiCNTs/PP demonstrate lower Young's modulus, maximum stress, and strain energy compared to the O-fCNTs/PE and O-fCNTs/PP. The zigzag O-fSiCNTs/polymer exhibit lower bearable maximum strains in response to loads as opposed to the O-fCNTs/polymer.

MOLECULAR SIMULATION (2023)

Article Physics, Multidisciplinary

A study on hyperelastic models for micromorphic solids

M. Bazdid-Vahdati, R. Ansari, A. Darvizeh

Summary: This paper presents two hyperelastic models for micromorphic hyperelasticity, which are suitable for materials with high dependence on the microdeformation gradient. Two new strain measures based on the microdeformation gradient are introduced and used in the hyperelastic formulation. The developed formulation allows for clear discussion of the dependency on the microdeformation gradient and the formulation of various types of hyperelastic models using the defined strain measures.

EUROPEAN PHYSICAL JOURNAL PLUS (2023)

Article Physics, Multidisciplinary

Atomistic-continuum multiscale-based free vibration analysis of single-layered graphene sheets in pre- and post-buckled states

Y. Gholami, R. Ansari, R. Gholami

Summary: This paper examines the free vibration of single-layered graphene sheets (SLGSs) subjected to compressive in-plane loads and embedded in a Winkler-Pasternak elastic medium. It uses the high-order Cauchy-Born (HCB) method, hyperelastic membrane and second gradient elasticity theory to provide a mathematical formulation. The variational differential quadrature (VDQ) method and Hamilton's principles are applied to obtain a set of discretized governing equations of motion.

EUROPEAN PHYSICAL JOURNAL PLUS (2023)

Article Engineering, Mechanical

Nonlinear Vortex Induced Vibration Analysis of Electrostatic Actuated Microbeam Based on Modified Strain Gradient Theory

Babak Ramazani Darvazi, Javad Rezapour, Saeed Rouhi, Raheb Gholami

Summary: In this paper, the nonlinear vortex-induced vibration of electrostatically actuated microbeam is studied based on modified strain gradient theory. The effects of mid-plane stretching, electrostatic actuation, Casimir and intermolecular forces are considered. By applying the Hamilton's principle and using the Galerkin method, the governing equations of motion are derived and the dynamic response and various characteristics are analyzed.

JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES (2023)

Article Mechanics

A VDQ approach to nonlinear vibration analysis of functionally graded porous circular plates resting on elastic foundation under hygrothermal shock

R. Ansari, M. Zargar Ershadi, M. Faraji Oskouie, H. Rouhi

Summary: This paper proposes a novel numerical approach to study the large-amplitude geometrically nonlinear vibrations of circular plates made of functionally graded porous materials subjected to hygrothermal loading on an elastic foundation. The modified Voigt's rule of mixture is used to estimate the hygrothermo-mechanical properties of the plates. The effects of hygroscopic stresses and different distribution patterns for porosity are considered. The governing equations for the vibrations are derived based on the first-order shear deformation plate theory and von-Karman geometrical nonlinear relations, and the Winkler-Pasternak model is used to incorporate the effect of the elastic foundation. The problem is solved using the generalized differential quadrature, variational differential quadrature, and Newmark-beta integration methods, and the influences of various parameters on the geometrically nonlinear vibrations are analyzed.

ACTA MECHANICA (2023)

Article Computer Science, Interdisciplinary Applications

A DFT-based finite element model to study the elastic, buckling and vibrational characteristics of monolayer bismuthene

Peyman Aghdasi, Shayesteh Yousefi, Reza Ansari

Summary: This paper uses DFT and FEM to study the elastic, vibrational and buckling properties of monolayer bismuthene. The developed model accurately predicts Young's modulus of the monolayer bismuthene. The influence of the vertical side length on the fundamental natural frequency is negligible, while vibrational characteristics are significantly affected by the horizontal side length.

ENGINEERING COMPUTATIONS (2023)

Article Engineering, Civil

Nonlinear large-amplitude vibration analysis of annular sector plates made of FGMs subjected to cooling shock

R. Ansari, M. Zargar Ershadi, H. Akbardoost Laskoukalayeh, H. Rouhi

Summary: This article develops a numerical approach to study the geometrically nonlinear vibrations of annular sector plates made of functionally graded materials (FGMs) due to cooling shock. The effects of various parameters on the large-amplitude vibrations of annular sector plates are investigated through numerical simulations.

THIN-WALLED STRUCTURES (2023)

Article Mechanics

Nonlinear electromechanical analysis of micro/nanobeams based on the nonlocal strain gradient theory tuned by flexoelectric and piezoelectric effects

Hamidreza Yademellat, Reza Ansari, Abolfazl Darvizeh, Jalal Torabi, Ali Zabihi

Summary: This study investigates the size-dependent dynamic pull-in instability of piezoelectrically and electrostatically actuated micro/nanobeams using the nonlocal strain gradient theory. The effects of flexoelectricity and piezoelectricity are considered, and various nonlinear forces are taken into account. The analysis method used in this study improves the reliability of the research model by comparing the results with existing literature.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2023)

Article Mechanics

Influences of carbon nanotubes on low velocity impact performance of metallic nanocomposite plates - A coupled numerical approach

M. Rasoolpoor, R. Ansari, M. K. Hassanzadeh-Aghdam

Summary: This study investigates the low velocity impact behavior of multi-walled carbon nanotube (MWCNT)-aluminum (Al) nanocomposite plates. The material properties of the nanocomposites are obtained using the rule of mixture, considering microstructural features of MWCNTs such as quantity, aspect ratio, alignment, waviness, and agglomeration. The finite element method is utilized to analyze the dynamic behavior of the plates. The results show that the addition of MWCNTs increases contact force and decreases plate center deflection and impact duration. Higher volume fraction, aspect ratio, straight shape, and uniform dispersion of MWCNTs lead to lesser center deflection in the nanocomposite plates.

MECHANICS BASED DESIGN OF STRUCTURES AND MACHINES (2023)

No Data Available