4.3 Article

Biotic interactions influence sediment erodibility on wave-exposed sandflats

Journal

MARINE ECOLOGY PROGRESS SERIES
Volume 523, Issue -, Pages 15-30

Publisher

INTER-RESEARCH
DOI: 10.3354/meps11164

Keywords

Deposit-feeding; Microphytobenthos; Benthic macrofauna; Sediment stability; Infauna; Positive feedbacks; Macomona liliana; Habitat modifiers

Funding

  1. National Institute of Water and Atmospheric Research (NIWA) under Coasts and Oceans Research Programme
  2. Flemish Fund for Scientific Research FWO post-doctoral fellowship [FWO-1.2.380.11.N.00]
  3. University of Waikato, INTERCOAST

Ask authors/readers for more resources

Biological activities in marine soft-sediments can modify the sedimentary environment through processes that change erosion rates. In low-energy environments, bioturbating macrofauna destabilizes sediments while microbes bind sediments and stabilize them. The degree to which these counter-acting processes influence sediment movement in a physically dynamic environment has not been well quantified. In a field experiment, we established 56 (1 m(2)) plots on an exposed intertidal sandflat. We used shade cloth and manipulated grazing pressure exerted by the deposit-feeding bivalve Macomona liliana (0-200 ind. m(-2)) to alter the microphytobenthic community. Three months post-manipulation, initiation of sediment transport (T-c) and change in sediment erosion rate with increasing bed shear stress (m(e)) were measured. Mean grain size, density of the spionid polychaete Aonides trifida, density of adult M. liliana, and bulk carbohydrate concentration could account for 54% of the variation in T-c (0.3-1.1 N m(-2) s(-1)). Mean grain size was the only significant predictor (p <= 0.01) of me explaining 22% of the variability (6-20 g N-1 s(-1)). T-c was negatively correlated with density of several abundant shallow- dwelling bioturbators (indicating sediment destabilization), but we did not observe the expected increase in T-c with microbial biomass. Furthermore, there was a positive correlation between adult M. liliana and T-c as well as evidence for several positive feedbacks between abundant shallow- dwelling macrofauna and microbial biomass. These study results demonstrate that despite frequent reworking by tidal currents and waves, bioturbating macrofauna are important to initiating sediment transport regardless of their effects on microbial biomass.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available