4.8 Article

Ultra-subwavelength phase-sensitive Fano-imaging of localized photonic modes

Journal

LIGHT-SCIENCE & APPLICATIONS
Volume 4, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/lsa.2015.99

Keywords

nanocavity; nanophotonics; near-field; phase retrieval; resonant-scattering

Categories

Funding

  1. FET project [FP7 618025 CARTOON]
  2. Netherlands Organization for Scientific Research (NWO)
  3. Engineering and Physical Sciences Research Council [EP/J005282/1] Funding Source: researchfish
  4. EPSRC [EP/J005282/1] Funding Source: UKRI

Ask authors/readers for more resources

Photonic and plasmonic devices rely on nanoscale control of the local density of optical states (LDOS) in dielectric and metallic environments. The tremendous progress in designing and tailoring the electric LDOS of nano-resonators requires an investigation tool that is able to access the detailed features of the optical localized resonant modes with deep-subwavelength spatial resolution. This scenario has motivated the development of different nanoscale imaging techniques. Here, we prove that a technique involving the combination of scanning near-field optical microscopy with resonant scattering spectroscopy enables imaging the electric LDOS in nano-resonators with outstanding spatial resolution (lambda/19) by means of a pure optical method based on light scattering. Using this technique, we investigate the properties of photonic crystal nanocavities, demonstrating that the resonant modes appear as characteristic Fano line shapes, which arise from interference. Therefore, by monitoring the spatial variation of the Fano line shape, we locally measure the phase modulation of the resonant modes without the need of external heterodyne detection. This novel, deep-subwavelength imaging method allows us to access both the intensity and the phase modulation of localized electric fields. Finally, this technique could be implemented on any type of platform, being particularly appealing for those based on non-optically active material, such as silicon, glass, polymers, or metals.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available