4.6 Article

Multiplexed coded illumination for Fourier Ptychography with an LED array microscope

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 5, Issue 7, Pages 2376-2389

Publisher

OPTICAL SOC AMER
DOI: 10.1364/BOE.5.002376

Keywords

-

Funding

  1. Development Impact Lab (USAID), part of USAID's Higher Education Solutions Network [AID-OAA-A-13-00002, AID-OAA-A-12-00011]
  2. Office of Naval Research [N00014-14-1-0083]

Ask authors/readers for more resources

Fourier Ptychography is a new computational microscopy technique that achieves gigapixel images with both wide field of view and high resolution in both phase and amplitude. The hardware setup involves a simple replacement of the microscope's illumination unit with a programmable LED array, allowing one to flexibly pattern illumination angles without any moving parts. In previous work, a series of low-resolution images was taken by sequentially turning on each single LED in the array, and the data were then combined to recover a bandwidth much higher than the one allowed by the original imaging system. Here, we demonstrate a multiplexed illumination strategy in which multiple randomly selected LEDs are turned on for each image. Since each LED corresponds to a different area of Fourier space, the total number of images can be significantly reduced, without sacrificing image quality. We demonstrate this method experimentally in a modified commercial microscope. Compared to sequential scanning, our multiplexed strategy achieves similar results with approximately an order of magnitude reduction in both acquisition time and data capture requirements. (C) 2014 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

Editorial Material Optics

Computer-free computational imaging: optical computing for seeing through random media

Yunzhe Li, Lei Tian

Summary: Diffractive Deep Neural Network allows for all-optical computational imaging to penetrate unknown random diffusers at the speed of light.

LIGHT-SCIENCE & APPLICATIONS (2022)

Article Optics

Adaptive 3D descattering with a dynamic synthesis network

Waleed Tahir, Hao Wang, Lei Tian

Summary: The researchers propose an adaptive learning framework called dynamic synthesis network (DSN) to adapt to different scattering conditions by blending multiple experts using a gating network. They demonstrate the DSN in holographic 3D particle imaging for a variety of scattering conditions and show its robust performance in simulation and experiments.

LIGHT-SCIENCE & APPLICATIONS (2022)

Editorial Material Optics

Deep learning augmented microscopy: a faster, wider view, higher resolution autofluorescence-harmonic microscopy

Lei Tian

Summary: Deep learning allows for the optimization of imaging speed, field of view, and spatial resolution in autofluorescence-harmonic microscopy without tradeoffs.

LIGHT-SCIENCE & APPLICATIONS (2022)

Article Neurosciences

Neurophotonic tools for microscopic measurements and manipulation: status report

Ahmed S. Abdelfattah, Sapna Ahuja, Taner Akkin, Srinivasa Rao Allu, Joshua Brake, David A. Boas, Erin M. Buckley, Robert E. Campbell, Anderson Chen, Xiaojun Cheng, Tomas Cizmar, Irene Costantini, Massimo De Vittorio, Anna Devor, Patrick R. Doran, Mirna El Khatib, Valentina Emiliani, Natalie Fomin-Thunemann, Yeshaiahu Fainman, Tomas Fernandez-Alfonso, Christopher G. L. Ferri, Ariel Gilad, Xue Han, Andrew Harris, Elizabeth M. C. Hillman, Ute Hochgeschwender, Matthew G. Holt, Na Ji, Kivilcim Kilic, Evelyn M. R. Lake, Lei Li, Tianqi Li, Philipp Machler, Evan W. Miller, Rickson C. Mesquita, K. M. Naga Srinivas Nadella, U. Valentin Nagerl, Yusuke Nasu, Axel Nimmerjahn, Petra Ondrackova, Francesco S. Pavone, Citlali Perez Campos, Darcy S. Peterka, Filippo Pisano, Ferruccio Pisanello, Francesca Puppo, Bernardo L. Sabatini, Sanaz Sadegh, Sava Sakadzic, Shy Shoham, Sanaya N. Shroff, R. Angus Silver, Ruth R. Sims, Spencer L. Smith, Vivek J. Srinivasan, Martin Thunemann, Lei Tian, Lin Tian, Thomas Troxler, Antoine Valera, Alipasha Vaziri, Sergei A. Vinogradov, Flavia Vitale, Lihong Wang, Hana Uhlirova, Chris Xu, Changhuei Yang, Mu-Han Yang, Gary Yellen, Ofer Yizhar, Yongxin Zhao

Summary: This article reviews a diverse toolkit of novel methods for exploring brain function that have emerged from the BRAIN Initiative and related large-scale efforts, with a focus on neurophotonic tools applicable to animal studies. It provides an outlook for future directions in the field.

NEUROPHOTONICS (2022)

Article Optics

High-fidelity intensity diffraction tomography with a non-paraxial multiple-scattering model

Jiabei Zhu, Hao Wang, Lei Tian

Summary: In this study, a novel IDT reconstruction algorithm based on the SSNP model is proposed for recovering the 3D refractive index distribution of multiple-scattering biological samples. The algorithm accurately computes multiple scattering from high-angle illumination and is applied to both sequential and multiplexed IDT techniques. Experimental results demonstrate the effectiveness and computational efficiency of the algorithm.

OPTICS EXPRESS (2022)

Article Optics

Optical spatial filtering with plasmonic directional image sensors

Jianing Liu, Hao Wang, Leonard C. Kogos, Yuyu Li, Yunzhe Li, Lei Tian, Roberto Paiella

Summary: Photonics offers a promising approach for image processing through spatial filtering, providing faster speeds and lower power consumption compared to electronic digital solutions. A new method based on pixel arrays of plasmonic directional image sensors is presented, allowing selective detection of light along a small set of geometrically adjustable directions. The resulting imaging systems serve as optical spatial filters without external filtering elements, enabling extreme size miniaturization and the ability to perform multiple filtering operations simultaneously. Rigorous theoretical models and experimental demonstrations showcase the image processing capabilities of these devices, with potential applications in biomedicine and computer vision.

OPTICS EXPRESS (2022)

Article Optics

Deep-learning-augmented computational miniature mesoscope

Yujia Xue, Qianwan Yang, Guorong Hu, Kehan Guo, Lei Tian

Summary: A computational miniature mesoscope (CM2) was developed to enable single-shot, 3D high-resolution imaging across a wide field of view on a miniaturized platform. By improving hardware and computation, including a hybrid emission filter and a 3D-printed collimator for LED illuminator, along with the development of a 3D linear shift-variant model and a deep learning model, accurate and efficient 3D reconstruction was achieved. The CM2Net model demonstrated superior axial resolution and speed compared to previous algorithms, making it a promising tool for large-scale 3D fluorescence imaging applications.

OPTICA (2022)

Article Optics

Roadmap on wavefront shaping and deep imaging in complex media

Sylvain Gigan, Ori Katz, Hilton B. de Aguiar, Esben Ravn Andresen, Alexandre Aubry, Jacopo Bertolotti, Emmanuel Bossy, Dorian Bouchet, Joshua Brake, Sophie Brasselet, Yaron Bromberg, Hui Cao, Thomas Chaigne, Zhongtao Cheng, Wonshik Choi, Tomas Cizmar, Meng Cui, Vincent R. Curtis, Hugo Defienne, Matthias Hofer, Ryoichi Horisaki, Roarke Horstmeyer, Na Ji, Aaron K. LaViolette, Jerome Mertz, Christophe Moser, Allard P. Mosk, Nicolas C. Pegard, Rafael Piestun, Sebastien Popoff, David B. Phillips, Demetri Psaltis, Babak Rahmani, Herve Rigneault, Stefan Rotter, Lei Tian, Ivo M. Vellekoop, Laura Waller, Lihong Wang, Timothy Weber, Sheng Xiao, Chris Xu, Alexey Yamilov, Changhuei Yang, Hasan Yilmaz

Summary: In the last decade, various tools such as wavefront shaping and computational methods have been developed to understand and control the propagation of light in complex mediums. This field has revolutionized the possibility of diffraction-limited imaging at depth in tissues, and a vibrant community is actively working on it.

JOURNAL OF PHYSICS-PHOTONICS (2022)

Article Optics

Multiple-scattering simulator-trained neural network for intensity diffraction tomography

Alex Matlock, Jiabei Zhu, Lei Tian

Summary: Recovering the 3D phase features of complex biological samples has traditionally involved sacrificing computational efficiency and processing time for physical model accuracy and reconstruction quality. However, this study introduces an approximant-guided deep learning framework that overcomes this challenge in a high-speed intensity diffraction tomography system. By training the network on natural image datasets using a physics model simulator-based learning strategy, complex 3D biological samples can be robustly reconstructed. This framework utilizes a lightweight 2D network structure with a multi-channel input to encode axial information, achieving highly efficient training and prediction.

OPTICS EXPRESS (2023)

Article Multidisciplinary Sciences

Bond-selective intensity diffraction tomography

Jian Zhao, Alex Matlock, Hongbo Zhu, Ziqi Song, Jiabei Zhu, Biao Wang, Fukai Chen, Yuewei Zhan, Zhicong Chen, Yihong Xu, Xingchen Lin, Lei Tian, Ji-Xin Cheng

Summary: This paper introduces Bond-selective Intensity Diffraction Tomography (BS-IDT), a computational mid-infrared photothermal microscopy technique based on a standard bright-field microscope and an add-on pulsed light source. It recovers both mid-infrared spectra and bond-selective 3D refractive index maps based on intensity-only measurements.

NATURE COMMUNICATIONS (2022)

Article Biochemical Research Methods

High-speed low-light in vivo two-photon voltage imaging of large neuronal populations

Jelena Platisa, Xin Ye, Allison M. Ahrens, Chang Liu, Ichun Anderson Chen, Ian G. Davison, Lei Tian, Vincent A. Pieribone, Jerry L. Chen

Summary: Monitoring spiking activity in large neuronal populations is crucial for understanding neural circuit function. Voltage imaging provides a new approach for this, but it faces challenges such as reduced fluorescence detection and limited imaging duration. This study developed improved voltage indicators, a high-speed two-photon microscope, and denoising software, enabling simultaneous high-speed deep-tissue imaging of more than 100 labeled neurons over 1 hour. This scalable approach offers a way to image voltage activity across increasing neuronal populations.

NATURE METHODS (2023)

Article Optics

Fourier ptychographic topography

Hao Wang, Jiabei Zhu, Jangwoon Sung, Guorong Hu, Joseph Greene, Yunzhe LI, Seungbeom Park, Wookrae Kim, Myungjun Lee, Yusin Yang, Lei Tian

Summary: Topography measurement is crucial for surface characterization and inspection applications. This study presents a novel topography technique called Fourier ptychographic topography (FPT), which combines a computational microscope and a phase retrieval algorithm to achieve wide-field-of-view and high-resolution topography reconstruction with nanoscale accuracy. FPT has important implications for surface characterization, semiconductor metrology, and inspection applications.

OPTICS EXPRESS (2023)

Article Optics

Mid-infrared chemical imaging of intracellular tau fibrils using fluorescence-guided computational photothermal microscopy

Jian Zhao, Lulu Jiang, Alex Matlock, Yihong Xu, Jiabei Zhu, Hongbo Zhu, Lei Tian, Benjamin Wolozin, Ji-Xin Cheng

Summary: Researchers developed a computational chemical microscope, FBS-IDT, which can extract molecular structure information of amyloid proteins in their native cellular environment. This technology enables label-free volumetric chemical imaging and 3D visualization of amyloid protein aggregates, as well as depth-resolved mid-infrared fingerprint spectroscopy for protein secondary structure analysis. It provides a new approach to study the relationship between neurodegenerative diseases and amyloid proteins.

LIGHT-SCIENCE & APPLICATIONS (2023)

Article Nanoscience & Nanotechnology

Asymmetric metasurface photodetectors for single-shot quantitative phase imaging

Jianing Liu, Hao Wang, Yuyu Li, Lei Tian, Roberto Paiella

Summary: This paper introduces a new type of image sensor that can directly visualize phase objects without additional optical elements. It is particularly significant for applications involving space-constrained and portable setups, and is applicable to surface profiling and biomedical microscopy.

NANOPHOTONICS (2023)

Article Computer Science, Artificial Intelligence

Recovery of continuous 3D refractive index maps from discrete intensity-only measurements using neural fields

Renhao Liu, Yu Sun, Jiabei Zhu, Lei Tian, Ulugbek S. Kamilov

Summary: Intensity Diffraction Tomography (IDT) is a technique that uses optical microscopy to image the three-dimensional refractive index distribution of a sample from two-dimensional intensity-only measurements. Neural fields is a new deep learning approach that can learn continuous representations of physical fields. DeCAF is a neural-fields-based IDT method that can learn a high-quality continuous representation of a refractive index volume from intensity-only and limited-angle measurements, without ground-truth RI maps. DeCAF can generate high-contrast and artifact-free RI maps and outperforms existing methods in terms of mean squared error reduction.

NATURE MACHINE INTELLIGENCE (2022)

No Data Available