4.6 Article

Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues

Journal

BIOMEDICAL OPTICS EXPRESS
Volume 2, Issue 10, Pages 2821-2836

Publisher

OPTICAL SOC AMER
DOI: 10.1364/BOE.2.002821

Keywords

-

Funding

  1. ERC [StG 242991]
  2. National Physical Laboratory, Teddington, Middlesex, UK

Ask authors/readers for more resources

The impact of digestive diseases, which include disorders affecting the oropharynx and alimentary canal, ranges from the inconvenience of a transient diarrhoea to dreaded conditions such as pancreatic cancer, which are usually fatal. Currently, the major limitation for the diagnosis of such diseases is sampling error because, even in the cases of rigorous adherence to biopsy protocols, only a tiny fraction of the surface of the involved gastrointestinal tract is sampled. Optical coherence tomography (OCT), which is an interferometric imaging technique for the minimally invasive measurement of biological samples, could decrease sampling error, increase yield, and even eliminate the need for tissue sampling provided that an automated, quick and reproducible tissue classification system is developed. Segmentation and quantification of ophthalmologic pathologies using OCT traditionally rely on the extraction of thickness and size measures from the OCT images, but layers are often not observed in nonopthalmic OCT imaging. Distinct mathematical methods, namely Principal Component Analysis (PCA) and textural analyses including both spatial textural analysis derived from the two-dimensional discrete Fourier transform (DFT) and statistical texture analysis obtained independently from center-symmetric auto-correlation (CSAC) and spatial grey-level dependency matrices (SGLDM), have been previously reported to overcome this problem. We propose an alternative approach consisting of a region segmentation according to the intensity variation along the vertical axis and a pure statistical technique for feature quantification, i.e. morphological analysis. Qualitative and quantitative comparisons with traditional approaches are accomplished in the discrimination of freshly-excised specimens of gastrointestinal tissues to exhibit the feasibility of the proposed method for computer-aided diagnosis (CAD) in the clinical setting. (C) 2011 Optical Society of America

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available