4.7 Article

GLI2 induces genomic instability in human keratinocytes by inhibiting apoptosis

Journal

CELL DEATH & DISEASE
Volume 5, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/cddis.2013.535

Keywords

genomic instability; GLI2; BCC; aneuploidy; apoptosis; Bcl-2

Categories

Funding

  1. Research Advisory Board of the Barts [DERG1D8R]
  2. London Charity

Ask authors/readers for more resources

Abnormal Sonic Hedgehog signalling leads to increased transcriptional activation of its downstream effector, glioma 2 (GLI2), which is implicated in the pathogenesis of a variety of human cancers. However, the mechanisms underlying the tumorigenic role of GLI2 remain elusive. We demonstrate that overexpression of GLI2-beta isoform, which lacks the N-terminal repressor domain (GLI2 Delta N) in human keratinocytes is sufficient to induce numerical and structural chromosomal aberrations, including tetraploidy/aneuploidy and chromosomal translocations. This is coupled with suppression of cell cycle regulators p21(WAF1/CIP1) and 14-3-3 sigma, and strong induction of anti-apoptotic signalling, resulting in a reduction in the ability to eliminate genomically abnormal cells. Overexpression of GLI2 Delta N also rendered human keratinocytes resistant to UVB-mediated apoptosis, whereas inhibition of B-cell lymphoma 2 (BCL-2) restored endogenous (genomic instability (GIN)) and exogenous (UVB) DNA damage-induced apoptosis. Thus, we propose that ectopic expression of GLI2 profoundly affects the genomic integrity of human epithelial cells and contributes to the survival of progenies with genomic alterations by deregulating cell cycle proteins and disabling the apoptotic mechanisms responsible for their elimination. This study reveals a novel role for GLI2 in promoting GIN, a hallmark of human tumors, and identifies potential mechanisms that may provide new opportunities for the design of novel forms of cancer therapeutic strategies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available