4.8 Article

Dispersing Pt atoms onto nanoporous gold for high performance direct formic acid fuel cells

Journal

CHEMICAL SCIENCE
Volume 5, Issue 1, Pages 403-409

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c3sc52792a

Keywords

-

Funding

  1. National 973 Program Project of China [2012CB932800]
  2. National Science Foundation of China [51171092]

Ask authors/readers for more resources

Direct formic acid fuel cells (DFAFCs) are promising portable energy conversion devices for supplying our off-grid energy demands. However, traditional Pt-based catalysts suffer from poor performance; consequently the precious metal loading in an actual fuel cell has to be maintained at a very high value, typically orders of magnitude higher than the acceptable level. Through a molecular self-assembly/electro-deposition process, Pt atoms are effectively dispersed onto the surface of a nanoporous gold substrate, and the resulting nanocomposites demonstrate superior electrocatalytic performance toward formic acid electro-oxidation, which can be attributed to a nearly ideal catalyst configuration where all the Pt atoms are involved in a highly desired direct reaction path. In both half-cell electrochemical testing and actual DFAFCs, these rationally designed electrodes show over two orders of magnitude improvement in Pt efficiency, as compared with the state-of-the-art Pt/C catalyst. This design strategy allows customized development of new generation electrocatalysts for high performance energy saving technologies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available