4.6 Article

Soft X-ray spectroscopic studies of the electronic structure of M:BiVO4 (M = Mo, W) single crystals

Journal

JOURNAL OF MATERIALS CHEMISTRY A
Volume 3, Issue 47, Pages 23743-23753

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5ta07898a

Keywords

-

Funding

  1. Department of Energy [DE-FG02-98ER45680]
  2. U.S. Department of Energy [DE-AC02-05CH11231, DE-FG02-09ER16119]
  3. Welch Foundation [F-1436]
  4. Hemphill-Gilmore Endowed fellowship
  5. NSF MIRT [DMR 1122603]
  6. Division of Chemical Sciences, Geo-sciences, and Biosciences of the US Department of Energy at the Lawrence Berkeley National Laboratory [DE-AC02-05CH11231]

Ask authors/readers for more resources

Bismuth vanadate, BiVO4, is a promising material for use as an anode in photoelectrochemical water splitting. However, its conversion efficiency is limited by poor bulk charge transport, which is via small-polarons. We report here the use of a suite of X-ray spectroscopic probes to determine the electronic structure of 0.3-0.6 at% M:BiVO4 (M = Mo or W). The results are interpreted in the context of current theories regarding the influence of doping on the existence of inter-band gap small-polaron states and their effect on the conversion efficiency of BiVO4. Preliminary X-ray absorption and emission measurements reveal that doping widens the band gap from 2.50 to 2.75 eV, whereas the indirect nature of the band gap remains unaffected. X-ray absorption spectroscopy verified that the doping levels did not affect the distorted tetrahedral environment of V5+ in BiVO4. For BiVO4 and W:BiVO4, V L-3 resonant inelastic X-ray scattering showed energy loss features related to charge transfer from low lying valence metal/oxygen states to unoccupied V e(g) conduction band states. A 3.8 eV energy loss feature, coupled with small polaron-like peaks measured in valence band resonant photoelectron spectroscopy of M:BiVO4, point to the population of inter-band gap V 3d states of eg symmetry. The data reveals the existence of a band gap state in the absence of an applied bias in M: BiVO4, linked to small-polaron formation. We tentatively assign it as a deep trap state, which suggests that the improved conversion efficiency of M:BiVO4 relative to the undoped material is largely due to the increased carrier concentration in spite of increased carrier recombination rates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available