4.4 Article

A single mutation in the gatekeeper residue in TgMAPKL-1 restores the inhibitory effect of a bumped kinase inhibitor on the cell cycle

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.ijpddr.2014.12.001

Keywords

Cytokinesis; BKI; MAPK; Toxoplastria gondii

Funding

  1. JSPS Research Fellowship for Young Scientists
  2. Ministry of Education, Culture, Science, Sports, and Technology (MEXT) of Japan
  3. Program for the Promotion of Basic and Applied Research for Innovations in Bio-oriented Industry (BRAIN)
  4. Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries, and Food Industry
  5. Program to Disseminate Tenure Tracking System from the Japan Science and Technology Agency (JST)
  6. Grants-in-Aid for Scientific Research [14J07030, 15H01306] Funding Source: KAKEN

Ask authors/readers for more resources

Toxoplasma gondii is the causative pathogen for Toxoplasmosis. Bumped kinase inhibitor 1NM-PP1 inhibits the growth of T. gondii by targeting TgCDPK1. However, we recently reported that resistance to 1NM-PP1 can be acquired via a mutation in T gouda mitogen-activated protein kinase like 1 (TgMAPKL-1). Further characterization of how this TgMAPKL-1 mutation restores the inhibitory effect of 1NM-PP1 would shed further light on the function of TgMAPKL-1 in the parasite life cycle. Therefore, we made parasite clones with TgMAPKL-1 mutated at the gatekeeper residue Ser 191, which is critical for 1NM-PP1 susceptibility. Host cell lysis of RH/ku80(-)/HA-TgMAPKL-1(S191A) was completely inhibited at 250 nM 1NM-PP1, whereas that of RH/ku80(-)/HA-TgMAPKL-1(S191Y) was not. By comparing 1NM-PP1-sensitive (RH/ku80(-)/HA-TgMAPKL-1(S191A)) and -resistant (RH/ku80(-)/HA-TgMAPKL-1(S191Y)) clones, we observed that inhibition of TgMAPKL-1 blocked cell cycle progression after DNA duplication. Morphological analysis revealed that TgMAPKL-1 inhibition caused enlarged parasite cells with many daughter cell scaffolds and imcomplete cytokinesis. We conclude that the mutation in TgMAPKL-1 restored the cell cycle-arresting effect of 1NM-PP1 on T. gondii endodyogeny. Given that endodyogeny is the primary mechanism of cell division for both the tachyzoite and bradyzoite stages of this parasite, TgMAPKL-1 may be a promising target for drug development. Exploration of the signals that regulate TgMAPKL-1 will provide further insights into the unique mode of T. gondii cell division. (C) 2014 The Authors. Published by Elsevier Ltd on behalf of Australian Society for Parasitology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available