4.6 Article

Dietary glycine blunts liver injury after bile duct ligation in rats

Journal

WORLD JOURNAL OF GASTROENTEROLOGY
Volume 14, Issue 39, Pages 5996-6003

Publisher

BAISHIDENG PUBLISHING GROUP INC
DOI: 10.3748/wjg.14.5996

Keywords

Glycine; Bile duct ligation; Cholestasis; Kupffer cells; Serum alanine transaminase; Deoxycholic acid

Funding

  1. National Institute of Alcohol Abuse and Alcoholism (NIAAA)
  2. Deutsche Forschungsgemeinschaft [FR 1644/4-1]

Ask authors/readers for more resources

AIM: To investigate the effects of (dietary) glycine against oxidant-induced injury caused by bile duct ligation (BDL). METHODS: Either a diet containing 5% glycine or a standard diet was fed to male Sprague-Dawley (SD) rats. Three days later, BDL or sham-operation was performed. Rats were sacrificed 1 to 3 d after BDL. The influence of cleoxycholic acid (DCA) in the presence or absence of glycine on liver cells was determined by measurement of calcium and chloride influx in cultivated Kupffer cells and lactate clehydrogenase (LDH) activity was determined in the supernatant of cultivated hepatocytes. RESULTS: Serum alanine transaminase levels increased to about 600 U/L 1 d after BDL. However, enzyme release was blunted by about two third in rats receiving glycine. Release of the alkaline phosphatase and aspartate aminotransferase was also blocked significantly in the group fed glycine. Focal necrosis was observed 2 d after BDL. Glycine partially blocked the histopathological changes. Incubation of Kupffer cells with DCA led to increased intracellular calcium that could be blocked by incubation with glycine. However, systemic blockage of Kupffer cells with gadolinium chloride had no effects on transaminase release. Incubation of isolated hepatocytes with DCA led to a significant release of LDH after 4 h. This release was largely blocked when incubation with glycine was performed. CONCLUSION: These data indicate that glycine significantly decreased liver injury, most likely by a direct effect on hepatocytes. Kupffer cells do not appear to play an important role in the pathological changes caused by cholestasis. (c) 2008 The WJG Press. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available