4.6 Article

Validation of the standalone implementation of the dynamic wake meandering model for power production

Journal

WIND ENERGY
Volume 18, Issue 9, Pages 1579-1591

Publisher

WILEY-BLACKWELL
DOI: 10.1002/we.1777

Keywords

dynamic wake meandering model; DWM; wake modelling; wind energy; wind farm dynamics; wind turbine wake; AEP

Ask authors/readers for more resources

This paper presents validation for using the standalone implementation of the dynamic wake meandering (DWM) model to conduct numerical simulations of power production of rows of wind turbines. The standalone DWM model is an alternative formulation of the conventional DWM model that does not require information exchange with an aeroelastic code. As a consequence, the standalone DWM model has significantly shorter computational times and lower demands on the user environment. The drawback of the standalone DWM model is that it does not have the capability to predict turbine loads. Instead, it should be seen as an alternative for simulating the power production of a wind farm. The main advantage of the standalone DWM model is the ability to capture the key physics for wake dynamics such as the turbine specific induction, the build-up of wake turbulence and wake deficit in the wind farm, and the effect of ambient turbulence intensity and atmospheric stability. The predicted power production of the standalone DWM model is compared with that of full scale measurements from Horns Rev, Lillgrund, Nysted and Weingermeer wind farms. Overall, the difference between the models predictions and the reference data is on the order of 5%. Copyright (c) 2014 John Wiley & Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available