4.4 Article

Biomass, Fecundity, and Interference Ability of Multiple Herbicide-Resistant and -Susceptible Late Watergrass (Echinochloa phyllopogon)

Journal

WEED SCIENCE
Volume 60, Issue 3, Pages 401-410

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1614/WS-D-11-00150.1

Keywords

Competition; herbicide resistance; root interference; niche differentiation; reciprocal yield models; fitness

Ask authors/readers for more resources

Echinochloa phyllopogon is a serious weed of California rice that has evolved resistance to most grass herbicides. We assessed differences in growth, interference, and fecundity between multiple resistant (R) and susceptible (S) E. phyllopogon. Interference with rice by R and S plants was similar, although R plants were shorter and had less leaf area and shoot biomass than S plants. Interference by one S or R E. phyllopogon plant with rice was 2.31 or 2.45 times greater than intraspecific interference by one rice plant, respectively. Interference was mostly driven by root interactions and E. phyllopogon on average produced seven times more root dry weight than rice. Deeper E. phyllopogon root placement compared with rice may explain niche differentiation between the two species. On average, R plants produced 55% less seeds than S plants. Lower fecundity could compromise fitness of R plants in the absence of herbicide selection, but partial avoidance of seed removal during rice harvest through earlier seed shattering may allow greater soil seed bank replenishment by R plants compared with S plants. E phyllopogon control is needed to prevent high rice yield losses, and suppressing survivors of initial herbicide treatments is essential to limit seed bank replenishment by R plants. The potential benefits of taller rice varieties with enhanced root competitiveness, and that may be harvested earlier, should be considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available