4.5 Article

Weakly nonlinear wave interactions in multi-degree of freedom periodic structures

Journal

WAVE MOTION
Volume 51, Issue 6, Pages 886-904

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.wavemoti.2014.03.003

Keywords

Wave interaction; Weakly nonlinear phononic crystal; Weakly nonlinear dispersion analysis; Periodic structure; Frequency shift

Funding

  1. National Science Foundation [CMMI 0926776]

Ask authors/readers for more resources

This work presents a multiple time scales perturbation analysis for analyzing weakly nonlinear wave interactions in multi-degree of freedom periodic structures. The perturbation analysis is broadly applicable to (discretized) periodic systems in any dimensional space and with a wide range of constitutive nonlinearities. Specific emphasis is placed on cubic nonlinearity, as dispersion shifts typically arise from the cubic components in nonlinear restoring forces. The procedureis first presented in general. Then, application to the diatomic chain and monoatomic two-dimensional lattice demonstrates, individually, the treatment of multiple degree of freedom systems and higher dimensional spaces. The dispersion relations are modified by weakly nonlinear wave interactions and lead to additional opportunities to control wave propagation direction, band gap size, and group velocity. Numerical simulations validate the expected dispersion shifts. An amplitude-tunable focus device demonstrates the viability of utilizing dynamically-introduced dispersion to produce beam steering that may, ultimately, lead to a phononic superprism effect as well as multiplexing/demultiplexing behavior. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available