4.5 Article

A time-course analysis of four full-scale anaerobic digesters in relation to the dynamics of change of their microbial communities

Journal

WATER SCIENCE AND TECHNOLOGY
Volume 63, Issue 4, Pages 769-775

Publisher

IWA PUBLISHING
DOI: 10.2166/wst.2011.307

Keywords

anaerobic liquefaction; biogas; microbial resource management; solid waste; T-RFLP

Funding

  1. Geconcerteerde Onderzoeksactie (GOA) of Ghent University [BOF09/GOA/005]

Ask authors/readers for more resources

This study describes the microbial community richness, -dynamics, and -organization of four full-scale anaerobic digesters during a time-course study of 45 days. The microbial community was analyzed using a Bacteria- and Archaea-targeting 16S rRNA gene-based Terminal-Restriction Fragment Length Polymorphism approach. Clustering analysis separated meso- and thermophilic reactors for both archaeal and bacterial communities. Regardless of the operating temperature, each installation possessed a distinct community profile. For both microbial domains, about 8 dominant terminal-restriction fragments could be observed, with a minimum of 4 and a maximum of 14. The bacterial community organization (a coefficient which describes the specific degree of evenness) showed a factor 2 more variation in the mesophilic reactors, compared with the thermophilic ones. The archaeal community structure of the mesophilic UASB reactor was found to be more stable. The community composition was highly dynamic for Bacteria and Archaea, with a rate of change between 20-50% per 15 days. This study illustrated that microbial communities in full-scale anaerobic digesters are unique to the installation and that community properties are dynamic. Converging complex microbial processes such as anaerobic digestion which rely on a multitude of microbial teams apparently can be highly dynamic.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available