4.5 Article

Proteomics computational analyses suggest that the bornavirus glycoprotein is a class III viral fusion protein (γ penetrene)

Journal

VIROLOGY JOURNAL
Volume 6, Issue -, Pages -

Publisher

BMC
DOI: 10.1186/1743-422X-6-145

Keywords

-

Categories

Funding

  1. National Institutes of Health [DK070551, UC1AI067188, R41AI068230, R56 AI64617]
  2. Louisiana Board of Regents [RC-0013-07]

Ask authors/readers for more resources

Background: Borna disease virus (BDV) is the type member of the Bornaviridae, a family of viruses that induce often fatal neurological diseases in horses, sheep and other animals, and have been proposed to have roles in certain psychiatric diseases of humans. The BDV glycoprotein (G) is an extensively glycosylated protein that migrates with an apparent molecular mass of 84,000 to 94,000 kilodaltons (kDa). BDV G is post-translationally cleaved by the cellular subtilisin-like protease furin into two subunits, a 41 kDa amino terminal protein GP1 and a 43 kDa carboxyl terminal protein GP2. Results: Class III viral fusion proteins (VFP) encoded by members of the Rhabdoviridae, Herpesviridae and Baculoviridae have an internal fusion domain comprised of beta sheets, other beta sheet domains, an extended alpha helical domain, a membrane proximal stem domain and a carboxyl terminal anchor. Proteomics computational analyses suggest that the structural/functional motifs that characterize class III VFP are located collinearly in BDV G. Structural models were established for BDV G based on the post-fusion structure of a prototypic class III VFP, vesicular stomatitis virus glycoprotein (VSV G). Conclusion: These results suggest that G encoded by members of the Bornavirdae are class III VFPs (gamma-penetrenes).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available