4.5 Article

Microbially mediated nitrogen retention and loss in a salt marsh soil

Journal

ECOSPHERE
Volume 6, Issue 1, Pages -

Publisher

ECOLOGICAL SOC AMER
DOI: 10.1890/ES14-00179.1

Keywords

denitrification; dissimilatory nitrate reduction to ammonium; Distichlis spicata; forb; graminoid; gross nitrogen cycling; Jaumea carnosa; redox; Tomales Bay

Categories

Funding

  1. National Parks Ecological Research Fellowship
  2. U.S. National Science Foundation [DEB-0543558]

Ask authors/readers for more resources

Salt marshes currently play an important role as filters for upslope nitrogen (N) inputs. This could change in the future with sea level rise, warming and eutrophication, which are expected to favor monocultures over diverse plant communities. We explored patterns in gross N cycling, dissimilatory nitrate (NO3-) reduction to ammonium (NH4+) (DNRA), and denitrification in a salt marsh soil under two typical redox conditions (aerobic and anaerobic), and in soils under plant communities manipulated to simulate potential future composition (forb and graminoid monocultures). Natural salt marsh soils exhibited high potential gross N mineralization rates, averaging 50.4 +/- 5.7 mu g N g(-1) d(-1) under aerobic conditions; rates declined to 23.6 +/- 3.4 mu g N g(-1) d(-1) under an N-2 headspace. Microbial NH4+ uptake and gross nitrification together accounted for only 14 % of gross N mineralization. Nitrogen retention via DNRA and microbial uptake greatly exceeded N losses via denitrification. Gross nitrification rates were greater in the forb and graminoid monocultures than in the control. This effect may be mediated by the lower plant biomass in the monocultures than in the control, which may have reduced competition between plants and nitrifiers for NH4+. Soil NO3- concentrations and net nitrous oxide (N2O) fluxes were greatest for the forb monoculture, likely due to higher soil oxygen (O-2) concentrations in these plots. Our results suggest that salt marsh soils with a diverse plant community have high potential rates of N mineralization and microbial N retention, and the establishment of forb monocultures could lead to greater ecosystem N losses.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available