4.3 Article

Differential induction of nitric oxide, degranulation, and oxidative burst activities in response to microbial agonist stimulations in monocytes and heterophils from young commercial Turkeys

Journal

VETERINARY IMMUNOLOGY AND IMMUNOPATHOLOGY
Volume 123, Issue 3-4, Pages 177-185

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.vetimm.2008.01.033

Keywords

toll-like receptor agonists; innate immune responses; nitric oxide; oxidative burst; degranulation; heterophils; monocytes; Turkeys

Ask authors/readers for more resources

The toll-like receptors (TLRs) recognize microbial pathogens and pathogen-associated molecular patterns and trigger inflammatory immune responses to control the infection. Here, we examined functional innate immune responses to Salmonella enteritidis (SE, live or formalin-killed) and various TLR agonists including lipoteichoic acid (LTA) and peptidoglycan (PGN) from Staphylococcus aureus and synthetic lipoprotein Pam3CSK4 (PAM), poly I:C (synthetic double-stranded RNA analog), lipopolysaccharide (LPS) from S. enteritidis, flagellin (FGN) from S. typhimurium, loxoribine (LOX) and R837 (synthetic anti-viral compounds), and CpG oligodeoxydinucleotide (CpG ODN)by measuring antimicrobial activities including oxidative burst and degranulation in heterophils and nitric oxide production in peripheral blood monocytes. Our results demonstrate differential nitric oxide responses to TLR agonists in turkey monocytes. LTA and CpG ODN were the most potent stimuli for nitric oxide induction followed by PAM, poly I:C, and LPS, whereas FGN, PGN, LOX, R837, and control ODN stimulated little or no nitric oxide production. Live SE stimulated significantly less NO production than formalin-killed SE (FKSE). Although FKSE induced significant degranulation and oxidative burst, most TLR agonists stimulate little oxidative burst and degranulation responses in turkey heterophils. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available