4.5 Article

STATISTICAL REGION-BASED SEGMENTATION OF ULTRASOUND IMAGES

Journal

ULTRASOUND IN MEDICINE AND BIOLOGY
Volume 35, Issue 5, Pages 781-795

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ultrasmedbio.2008.10.014

Keywords

Ultrasound image segmentation; Speckle decorrelation; Zero-mean complex Gaussian flow; Fisher-Tippett distribution; Fisher-Tippett distribution; Variational and level set methods

Ask authors/readers for more resources

Segmentation of ultrasound images is a challenging problem due to speckle, which corrupts the image and can result in weak or missing image boundaries, poor signal to noise ratio and diminished contrast resolution. Speckle is a random interference pattern that is characterized by an asymmetric distribution as well as significant spatial correlation. These attributes of speckle are challenging to model in a segmentation approach, so many previous ultrasound segmentation methods simplify the problem by assuming that the speckle is white and/or Gaussian distributed. Unlike these methods, in this article we present an ultrasound-specific segmentation approach that addresses both the spatial correlation of the data as well as its intensity distribution. We first decorrelate the image and then apply a region-based active contour whose motion is derived from an appropriate parametric distribution for maximum likelihood image segmentation. We consider zero-mean complex Gaussian, Rayleigh, and Fisher-Tippett flows, which are designed to model fully formed speckle in the in-phase/quadrature (IQ), envelope detected, and display (log compressed) images, respectively. We present experimental results demonstrating the effectiveness of our method and compare the results with other parametric and nonparametric active contours. (E-mail: greg.slabaugh@gmail.com) (C) 2009 World Federation for Ultrasound in Medicine & Biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available