4.5 Article

Volume segmentation and reconstruction from freehand three-dimensional ultrasound data with application to ovarian follicle measurement

Journal

ULTRASOUND IN MEDICINE AND BIOLOGY
Volume 34, Issue 2, Pages 183-195

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.ultrasmedbio.2007.07.023

Keywords

three-dimensional; freehand; ovarian follicle; volume reconstruction

Ask authors/readers for more resources

This article presents a semi-automatic method for segmentation and reconstruction of freehand three-dimensional (3D) ultrasound data. The method incorporates a number of interesting features within the level-set framework: First, segmentation is carried out using region competition, requiring multiple distinct and competing regions to be encoded within the framework. This region competition uses a simple dot-product based similarity measure to compare intensities within each region. In addition, segmentation and surface reconstruction is performed within the 3D domain to take advantage of the additional spatial information available. This means that the method must interpolate the surface where there are gaps in the data, a feature common to freehand 3D ultrasound reconstruction. Finally, although the level-set method is restricted to a voxel grid, no assumption is made that the data being segmented will conform to this grid and may be segmented in its world-reference position. The volume reconstruction method is demonstrated in vivo for the volume measurement of ovarian follicles. The 3D reconstructions produce a lower error variance than the current clinical measurement based on a mean diameter estimated from two-dimensional (2D) images. However, both the clinical measurement and the semi-automatic method appear to underestimate the true follicular volume. (E-mail: gooding@robots.ox.ac.uk) (C) 2008 World Federation for Ultrasound in Medicine & Biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available