4.2 Article

Structure-activity relationships of macrolides against Mycobacterium tuberculosis

Journal

TUBERCULOSIS
Volume 88, Issue -, Pages S49-S63

Publisher

CHURCHILL LIVINGSTONE
DOI: 10.1016/S1472-9792(08)70036-2

Keywords

Mycobacterium tuberculosis; macrolides; ketolides; SAR; synthesis

Funding

  1. Global Alliance for TB Drug Development

Ask authors/readers for more resources

Existing 14, 15 and 16-membered macrolide antibiotics, white effective for other bacterial, infections, including some mycobacteria, have not demonstrated significant. efficacy in tuberculosis. Therefore an attempt was made to optimize this class for activity against Mycobacterium tuberculosis through semisyntheses and bioassay. Approximately 300 macrolides were synthesized and screened for anti-TB activity. Structural modifications on erythromycin were carried out at positions 3, 6, 9, 11, and 12 of the 14-membered lactone ring; as well as at position 4 of cladinose and position 2' of desosamine. In general, the synthesized macrolides belong to four subclasses: 9-oxime, 11,12-carbamate, 11,12-carbazate, and 6-0-substituted derivatives. Selected compounds were assessed for mammalian cell toxicity and in some cases were further assessed for CYP3A4 inhibition, microsome stability, in vivo tolerance and efficacy. The activity of 11 12-carbamates and carbazates as well as 9-oximes is highly influenced by the nature of the substitution at these positions. For hydrophilic macrolides, lipophilic substitution may result in enhanced potency, presumably by enhanced passive permeation through the cell envelope. This strategy, however, has limitations. Removal of the C-3 cladinose generally reduces the activity. Acetylation at C-2' or 4 maintains potency of C-9 oximes but dramatically decreases that of 11,12-substituted compounds. Further significant increases in the potency of macrolides for M. tuberculosis may require a strategy for the concurrent reduction of ribosome methytation. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available